ГЛАВА 5. СИСТЕМНЫЕ ОПЕРАЦИИ ДЛЯ РАБОТЫ С ФАЙЛОВОЙ СИСТЕМОЙ В последней главе рассматривались внутренние структуры данных для файло- вой системы и алгоритмы работы с ними. В этой главе речь пойдет о системных функциях для работы с файловой системой с использованием понятий, введенных в предыдущей главе. Рассматриваются системные функции, обеспечивающие обра- щение к существующим файлам, такие как open, read, write, lseek и close, за- тем функции создания новых файлов, а именно, creat и mknod, и, наконец, фун- кции для работы с индексом или для передвижения по файловой системе: chdir, chroot, chown, stat и fstat. Исследуются более сложные системные функции: pipe и dup имеют важное значение для реализации каналов в shell'е; mount и umount расширяют видимое для пользователя дерево файловых систем; link и unlink изменяют иерархическую структуру файловой системы. Затем дается пред- ставление об абстракциях, связанных с файловой системой, в отношении поддер- жки различных файловых систем, подчиняющихся стандартным интерфейсам. В пос- леднем разделе главы речь пойдет о сопровождении файловой системы. Глава знакомит с тремя структурами данных ядра: таблицей файлов, в которой каждая запись связана с одним из открытых в системе файлов, таблицей пользователь- ских дескрипторов файлов, в которой каждая запись связана с файловым деск- риптором, известным процессу, и таблицей монтирования, в которой содержится информация по каждой активной файловой системе. Функции для работы с файловой системой +----------------------------------------------------------------+ +------+--------------+--------+-------+-------+---------+-------+ | Воз- | Используют | Назна- | Рабо- | Ввод- | Работа- | Управ-| | вра- | алгоритм | чают | тают | вывод | ют со | ление | | щают | namei | индек- | с ат- | из | структу-| де- | | деск-| | сы | рибу- | файла | рой фай-| ревь- | | рип- | | | тами | | ловых | ями | | торы | | | файла | | систем | | | файла| | | | | | | +------+--------------+--------+-------+-------+---------+-------+ | open | open stat | | | | | | | creat| creat link | creat | chown | read | | | | dup | chdir unlink| mknod | chmod | write | mount | chdir | | pipe | chroot mknod | link | stat | lseek | umount | chown | | close| chown mount | unlink | | | | | | | chmod umount| | | | | | +------+--------------+--------+-------+-------+---------+-------+ +---+--+--------------+--------+-------+-------+---------+----+--+ | Алгоритмы работы с файловой системой на нижнем уровне | +-------------+------------------+------------------------+ | namei | | | +-------------+ ialloc ifree | alloc free bmap | | iget iput | | | +-------------+------------------+------------------------+ +---------------------------------------------------------+ | алгоритмы работы с буферами | +---------------------------------------------------------+ | getblk brelse bread breada bwrite | +---------------------------------------------------------+ Рисунок 5.1. Функции для работы с файловой системой и их связь с другими алгоритмами 85 На Рисунке 5.1 показана взаимосвязь между системными функциями и алго- ритмами, описанными ранее. Системные функции классифицируются на несколько категорий, хотя некоторые из функций присутствуют более, чем в одной катего- рии: * Системные функции, возвращающие дескрипторы файлов для использования другими системными функциями; * Системные функции, использующие алгоритм namei для анализа имени пути поиска; * Системные функции, назначающие и освобождающие индекс с использованием алгоритмов ialloc и ifree; * Системные функции, устанавливающие или изменяющие атрибуты файла; * Системные функции, позволяющие процессу производить ввод-вывод данных с использованием алгоритмов alloc, free и алгоритмов выделения буфера; * Системные функции, изменяющие структуру файловой системы; * Системные функции, позволяющие процессу изменять собственное представле- ние о структуре дерева файловой системы. 5.1 OPEN Вызов системной функции open (открыть файл) - это первый шаг, который должен сделать процесс, чтобы обратиться к данным в файле. Синтаксис вызова функции open: fd = open(pathname,flags,modes); где pathname - имя файла, flags указывает режим открытия (например, для чте- ния или записи), а modes содержит права доступа к файлу в случае, если файл создается. Системная функция open возвращает целое число (*), именуемое пользовательским дескриптором файла. Другие операции над файлами, такие как чтение, запись, по- зиционирование головок чтения-записи, воспроизведение дескриптора файла, ус- тановка параметров ввода-вывода, определение статуса файла и закрытие файла, используют значение дескриптора файла, возвращаемое системной функцией open. Ядро просматривает файловую систему в поисках файла по его имени, ис- пользуя алгоритм namei (см. Рисунок 5.2). Оно проверяет права на открытие файла после того, как обнаружит копию индекса файла в памяти, и выделяет от- крываемому файлу запись в таблице файлов. Запись таблицы файлов содержит указатель на индекс открытого файла и поле, в котором хранится смещение в байтах от начала файла до места, откуда предполагается начинать выполнение последующих операций чтения или записи. Ядро сбрасывает это смещение в 0 во время открытия файла, имея в виду, что исходная операция чтения или записи по умолчанию будет производиться с начала файла. С другой стороны, процесс может открыть файл в режиме записи в конец, в этом случае ядро устанавливает значение смещения, равное размеру файла. Ядро выделяет запись в личной (зак- рытой) таблице в адресном пространстве задачи, выделенном процессу (таблица эта называется таблицей пользовательских дескрипторов файлов), и запоминает указатель на эту запись. Указателем выступает дескриптор файла, возвращаемый пользователю. Запись в таблице пользовательских файлов указывает на запись в глобальной таблице файлов. --------------------------------------- (*) Все системные функции возвращают в случае неудачного завершения код -1. Код возврата, равный -1, больше не будет упоминаться при рассмотрении синтаксиса вызова системных функций. 86 +------------------------------------------------------------+ | алгоритм open | | входная информация: имя файла | | режим открытия | | права доступа (при создании файла) | | выходная информация: дескриптор файла | | { | | превратить имя файла в идентификатор индекса (алгоритм | | namei); | | если (файл не существует или к нему не разрешен доступ) | | возвратить (код ошибки); | | выделить для индекса запись в таблице файлов, инициали- | | зировать счетчик, смещение; | | выделить запись в таблице пользовательских дескрипторов | | файла, установить указатель на запись в таблице файлов;| | если (режим открытия подразумевает усечение файла) | | освободить все блоки файла (алгоритм free); | | снять блокировку (с индекса); /* индекс заблокирован | | выше, в алгоритме | | namei */ | | возвратить (пользовательский дескриптор файла); | | } | +------------------------------------------------------------+ Рисунок 5.2. Алгоритм открытия файла Предположим, что процесс, открывая файл "/etc/passwd" дважды, один раз только для чтения и один раз только для записи, и однажды файл "local" для чтения и для записи (**), выполняет следующий набор операторов: fd1 = open("/etc/passwd",O_RDONLY); fd2 = open("local",O_RDWR); fd3 = open("/etc/passwd",O_WRONLY); На Рисунке 5.3 показана взаимосвязь между таблицей индексов, таблицей файлов и таблицей пользовательских дескрипторов файла. Каждый вызов функции open возвращает процессу дескриптор файла, а соответствующая запись в табли- це пользовательских дескрипторов файла указывает на уникальную запись в таб- лице файлов ядра, пусть даже один и тот же файл ("/etc/passwd") открывается дважды. Записи в таблице файлов для всех экземпляров одного и того же открытого файла указывают на одну запись в таблице индексов, хранящихся в памяти. Про- цесс может обращаться к файлу "/etc/passwd" с чтением или записью, но только через дескрипторы файла, имеющие значения 3 и 5 (см. рисунок).Ядро запомина- ет разрешение на чтение или запись в файл в строке таблицы файлов,выделенной во время выполнения функции open. Предположим, что второй процесс выполняет следующий набор операторов: --------------------------------------- (**) В описании вызова системной функции open содержатся три параметра (тре- тий используется при открытии в режиме создания), но программисты обыч- но используют только первые два из них. Компилятор с языка Си не прове- ряет правильность количества параметров. В системе первые два параметра и третий (с любым "мусором", что бы ни произошло в стеке) передаются обычно ядру. Ядро не проверяет наличие третьего параметра, если только необходимость в нем не вытекает из значения второго параметра, что поз- воляет программистам указать только два параметра. 87 таблица пользова- тельских дескрип- торов файла таблица файлов таблица индексов +---------+ +------------+ +--------------+ 0| | | | | - | +---------+ | | | - | 1| | | | | - | +---------+ +------------+ | - | 2| | | - | | - | +---------+ | - | | - | 3| ----+----+ | - | | - | +---------+ | | - | +--------------+ 4| ----+---+| | - | +---->| счет- | +---------+ || | - | |+--->| чик (/etc/ | 5| ----+--+|| +------------+ || | 2 passwd)| +---------+ ||| | счет- | || +--------------+ 6| | ||+-->| чик Чтение+--+| | - | +---------+ || | 1 | | | - | 7| | || +------------+ | | - | +---------+ || | - | | | - | | - | || | - | | | - | +---------+ || +------------+ | | - | || | счет- Чте-| | | - | |+--->| чик ние-+---|-+ | - | | | 1 Запись| | | | - | | +------------+ | | | - | | | - | | | +--------------+ | | - | | | | счет- | | | - | | +->| чик (local)| | | - | | | 1 | | | - | | +--------------+ | +------------+ | | - | | | счет- | | | - | +---->| чик Запись+---+ | - | | 1 | | - | +------------+ | - | | - | | - | | - | | - | +------------+ +--------------+ Рисунок 5.3. Структуры данных после открытия fd1 = open("/etc/passwd",O_RDONLY); fd2 = open("private",O_RDONLY); На Рисунке 5.4 показана взаимосвязь между соответствующими структурами дан- ных, когда оба процесса (и больше никто) имеют открытые файлы. Снова резуль- татом каждого вызова функции open является выделение уникальной точки входа в таблице пользовательских дескрипторов файла и в таблице файлов ядра, и яд- ро хранит не более одной записи на каждый файл в таблице индексов, размещен- ных в памяти. Запись в таблице пользовательских дескрипторов файла по умолчанию хранит смещение в файле до адреса следующей операции вводавывода и указывает непос- редственно на точку входа в таблице индексов для файла, устраняя необходи- мость в отдельной таблице файлов ядра. Вышеприведенные примеры показывают взаимосвязь между записями таблицы пользовательских дескрипторов файла и за- 88 таблицы пользова- тельских дескрип- торов файла (процесс A) таблица файлов таблица индексов +---------+ +------------+ +--------------+ 0| | | | | - | +---------+ | | | - | 1| | | | | - | +---------+ +------------+ | - | 2| | | - | | - | +---------+ | - | | - | 3| ----+----+ | - | | - | +---------+ | | - | +--------------+ 4| ----+---+| | - | +---->| счет- | +---------+ || | - | |+--->| чик (/etc/ | 5| ----+--+|| +------------+ ||+-->| 3 passwd)| +---------+ ||| | счет- | ||| +--------------+ | - | ||+-->| чик Чтение+--+|| | - | | - | || | 1 | || | - | | - | || +------------+ || | - | +---------+ || | - | || | - | || | - | || | - | (процесс B) || | - | || | - | +---------+ || | - | || | - | 0| | || +------------+ || | - | +---------+ || | счет- Чте-| || | - | 1| | |+--->| чик ние-+---||+ | - | +---------+ | | 1 Запись| ||| | - | 2| | | +------------+ ||| | - | +---------+ | | - | ||| +--------------+ 3| ----+--|--+ | - | ||| | счет- | +---------+ | | | - | ||+->| чик (local)| 4| ----+-+| | | - | || | 1 | +---------+ || | | - | || +--------------+ 5| | || | | - | || | - | +---------+ || | +------------+ || | - | | - | || | | счет- | || | - | | - | || +->| чик Чтение+---+| | - | | - | || | 1 | | | - | +---------+ || +------------+ | | - | || | - | | | - | || | - | | +--------------+ || | - | | | счет- | || +------------+ |+->| чик (private)| || | счет- | || | 1 | |+---->| чик Запись+----+| +--------------+ | | 1 | | | - | | +------------+ | | - | | | - | | +--------------+ | | - | | | +------------+ | | | счет- | | +----->| чик Чтение+-----+ | 1 | +------------+ Рисунок 5.4. Структуры данных после того, как два процесса произвели открытие файлов 89 писями в таблице файлов ядра типа "один к одному". Томпсон, однако, отмеча- ет, что им была реализована таблица файлов как отдельная структура, позволя- ющая совместно использовать один и тот же указатель смещения нескольким пользовательским дескрипторам файла (см. [Thompson 78], стр.1943). В систем- ных функциях dup и fork, рассматриваемых в разделах 5.13 и 7.1, при работе со структурами данных допускается такое совместное использование. Первые три пользовательских дескриптора (0, 1 и 2) именуются дескрипто- рами файлов: стандартного ввода, стандартного вывода и стандартного файла ошибок. Процессы в системе UNIX по договоренности используют дескриптор фай- ла стандартного ввода при чтении вводимой информации, дескриптор файла стан- дартного вывода при записи выводимой информации и дескриптор стандартного файла ошибок для записи сообщений об ошибках. В операционной системе нет ни- какого указания на то, что эти дескрипторы файлов являются специальными. Группа пользователей может условиться о том, что файловые дескрипторы, имею- щие значения 4, 6 и 11, являются специальными, но более естественно начинать отсчет с 0 (как в языке Си). Принятие соглашения сразу всеми пользователь- скими программами облегчит связь между ними при использовании каналов, в чем мы убедимся в дальнейшем, изучая главу 7. Обычно операторский терминал (см. главу 10) служит и в качестве стандартного ввода, и в качестве стандартного вывода и в качестве стандартного устройства вывода сообщений об ошибках. 5.2 READ Синтаксис вызова системной функции read (читать): number = read(fd,buffer,count) где fd - дескриптор файла, возвращаемый функцией open, buffer - адрес струк- туры данных в пользовательском процессе, где будут размещаться считанные данные в случае успешного завершения выполнения функции read, count - коли- чество байт, которые пользователю нужно прочитать, number - количество фак- тически прочитанных байт. На Рисунке 5.5 приведен алгоритм read, выполняющий чтение обычного файла. Ядро обращается в таблице файлов к записи, которая соответствует значению пользовательского дескриптора файла, следуя за указателем (см. Рисунок 5.3). Затем оно устанавливает значения нескольких параметров ввода-вывода в адресном пространстве процесса (Рисунок 5.6), тем самым устраняя необходимость в их передаче в качестве параметров функции. В частности, ядро указывает в качестве режима ввода-вывода "чтение", устанав- ливает флаг, свидетельствующий о том, что ввод-вывод направляется в адресное пространство пользователя, значение поля счетчика байтов приравнивает коли- честву байт, которые будут прочитаны, устанавливает адрес пользовательского буфера данных и, наконец, значение смещения (из таблицы файлов), равное сме- щению в байтах внутри файла до места, откуда начинается ввод-вывод. После того, как ядро установит значения параметров ввода-вывода в адресном прост- ранстве процесса, оно обращается к индексу, используя указатель из таблицы файлов, и блокирует его прежде, чем начать чтение из файла. Затем в алгоритме начинается цикл, выполняющийся до тех пор, пока опера- ция чтения не будет произведена до конца. Ядро преобразует смещение в байтах внутри файла в номер блока, используя ал- 90 +------------------------------------------------------------+ | алгоритм read | | входная информация: пользовательский дескриптор файла | | адрес буфера в пользовательском про- | | цессе | | количество байт, которые нужно прочи- | | тать | | выходная информация: количество байт, скопированных в поль-| | зовательское пространство | | { | | обратиться к записи в таблице файлов по значению пользо-| | вательского дескриптора файла; | | проверить доступность файла; | | установить параметры в адресном пространстве процесса, | | указав адрес пользователя, счетчик байтов, параметры | | ввода-вывода для пользователя; | | получить индекс по записи в таблице файлов; | | заблокировать индекс; | | установить значение смещения в байтах для адресного | | пространства процесса по значению смещения в таблице | | файлов; | | выполнить (пока значение счетчика байтов не станет удов-| | летворительным) | | { | | превратить смещение в файле в номер дискового блока | | (алгоритм bmap); | | вычислить смещение внутри блока и количество байт, | | которые будут прочитаны; | | если (количество байт для чтения равно 0) | | /* попытка чтения конца файла */ | | прерваться; /* выход из цикла */ | | прочитать блок (алгоритм breada, если производится | | чтение с продвижением, и алгоритм bread - в против- | | ном случае); | | скопировать данные из системного буфера по адресу | | пользователя; | | скорректировать значения полей в адресном простран- | | стве процесса, указывающие смещение в байтах внутри | | файла, количество прочитанных байт и адрес для пе- | | редачи в пространство пользователя; | | освободить буфер; /* заблокированный в алгоритме | | bread */ | | } | | разблокировать индекс; | | скорректировать значение смещения в таблице файлов для | | следующей операции чтения; | | возвратить (общее число прочитанных байт); | | } | +------------------------------------------------------------+ Рисунок 5.5. Алгоритм чтения из файла +------------------------------------------------------+ | mode чтение или запись | | count количество байт для чтения или записи | | offset смещение в байтах внутри файла | | address адрес места, куда будут копироваться данные,| | в памяти пользователя или ядра | | flag отношение адреса к памяти пользователя или | | к памяти ядра | +------------------------------------------------------+ Рисунок 5.6. Параметры ввода-вывода, хранящиеся в пространстве процесса 91 горитм bmap, и вычисляет смещение внутри блока до места, откуда следует на- чать ввод-вывод, а также количество байт, которые будут прочитаны из блока. После считывания блока в буфер, возможно, с продвижением (алгоритмы bread и breada) ядро копирует данные из блока по назначенному адресу в пользователь- ском процессе. Оно корректирует параметры ввода-вывода в адресном пространс- тве процесса в соответствии с количеством прочитанных байт, увеличивая зна- чение смещения в байтах внутри файла и адрес места в пользовательском про- цессе, куда будет доставлена следующая порция данных, и уменьшая число байт, которые необходимо прочитать, чтобы выполнить запрос пользователя. Если зап- рос пользователя не удовлетворен, ядро повторяет весь цикл, преобразуя сме- щение в байтах внутри файла в номер блока, считывая блок с диска в системный буфер, копируя данные из буфера в пользовательский процесс, освобождая буфер и корректируя значения параметров ввода-вывода в адресном пространстве про- цесса. Цикл завершается, либо когда ядро выполнит запрос пользователя пол- ностью, либо когда в файле больше не будет данных, либо если ядро обнаружит ошибку при чтении данных с диска или при копировании данных в пространство пользователя. Ядро корректирует значение смещения в таблице файлов в соот- ветствии с количеством фактически прочитанных байт; поэтому успешное выпол- нение операций чтения выглядит как последовательное считывание данных из файла. Системная операция lseek (раздел 5.6) устанавливает значение смещения в таблице файлов и изменяет порядок, в котором процесс читает или записывает данные в файле. +------------------------------------------------------+ | #include | | main() | | { | | int fd; | | char lilbuf[20],bigbuf[1024]; | | | | fd = open("/etc/passwd",O_RDONLY); | | read(fd,lilbuf,20); | | read(fd,bigbuf,1024); | | read(fd,lilbuf,20); | | } | +------------------------------------------------------+ Рисунок 5.7. Пример программы чтения из файла Рассмотрим программу, приведенную на Рисунке 5.7. Функция open возвраща- ет дескриптор файла, который пользователь засылает в переменную fd и исполь- зует в последующих вызовах функции read. Выполняя функцию read, ядро прове- ряет, правильно ли задан параметр "дескриптор файла", а также был ли файл предварительно открыт процессом для чтения. Оно сохраняет значение адреса пользовательского буфера, количество считываемых байт и начальное смещение в байтах внутри файла (соответственно: lilbuf, 20 и 0), в пространстве процес- са. В результате вычислений оказывается, что нулевое значение смещения соот- ветствует нулевому блоку файла, и ядро возвращает точку входа в индекс, со- ответствующую нулевому блоку. Предполагая, что такой блок существует, ядро считывает полный блок размером 1024 байта в буфер, но по адресу lilbuf копи- рует только 20 байт. Оно увеличивает смещение внутри пространства процесса на 20 байт и сбрасывает счетчик данных в 0. Поскольку операция read выполни- лась, ядро переустанавливает значение смещения в таблице файлов на 20, так что последующие операции чтения из файла с данным дескриптором начнутся с места, расположенного со смещением 20 байт от начала файла, а системная фун- кция возвращает число байт, фактически прочитанных, т.е. 20. При повторном вызове функции read ядро вновь проверяет корректность ука- зания дескриптора и наличие соответствующего файла, открытого процессом для 92 чтения, поскольку оно никак не может узнать, что запрос пользователя на чте- ние касается того же самого файла, существование которого было установлено во время последнего вызова функции. Ядро сохраняет в пространстве процесса пользовательский адрес bigbuf, количество байт, которые нужно прочитать про- цессу (1024), и начальное смещение в файле (20), взятое из таблицы файлов. Ядро преобразует смещение внутри файла в номер дискового блока, как раньше, и считывает блок. Если между вызовами функции read прошло непродолжительное время, есть шансы, что блок находится в буферном кеше. Однако, ядро не может полностью удовлетворить запрос пользователя на чтение за счет содержимого буфера, поскольку только 1004 байта из 1024 для данного запроса находятся в буфере. Поэтому оно копирует оставшиеся 1004 байта из буфера в пользователь- скую структуру данных bigbuf и корректирует параметры в пространстве процес- са таким образом, чтобы следующий шаг цикла чтения начинался в файле с байта 1024, при этом данные следует копировать по адресу байта 1004 в bigbuf в об- ъеме 20 байт, чтобы удовлетворить запрос на чтение. Теперь ядро переходит к началу цикла, содержащегося в алгоритме read. Оно преобразует смещение в байтах (1024) в номер логического блока (1), об- ращается ко второму блоку прямой адресации, номер которого хранится в индек- се, и отыскивает точный дисковый блок, из которого будет производиться чте- ние. Ядро считывает блок из буферного кеша или с диска, если в кеше данный блок отсутствует. Наконец, оно копирует 20 байт из буфера по уточненному ад- ресу в пользовательский процесс. Прежде чем выйти из системной функции, ядро устанавливает значение поля смещения в таблице файлов равным 1044, то есть равным значению смещения в байтах до места, куда будет производиться следую- щее обращение. В последнем вызове функции read из примера ядро ведет себя, как и в первом обращении к функции, за исключением того, что чтение из файла в данном случае начинается с байта 1044, так как именно это значение будет обнаружено в поле смещения той записи таблицы файлов, которая соответствует указанному дескриптору. Пример показывает, насколько выгодно для запросов ввода-вывода работать с данными, начинающимися на границах блоков файловой системы и имеющими раз- мер, кратный размеру блока. Это позволяет ядру избегать дополнительных ите- раций при выполнении цикла в алгоритме read и всех вытекающих последствий, связанных с дополнительными обращениями к индексу в поисках номера блока, который содержит данные, и с конкуренцией за использование буферного пула. Библиотека стандартных модулей ввода-вывода создана таким образом, чтобы скрыть от пользователей размеры буферов ядра; ее использование позволяет из- бежать потерь производительности, присущих процессам, работающим с небольши- ми порциями данных, из-за чего их функционирование на уровне файловой систе- мы неэффективно (см. упражнение 5.4). Выполняя цикл чтения, ядро определяет, является ли файл объектом чтения с продвижением: если процесс считывает последовательно два блока, ядро пред- полагает, что все очередные операции будут производить последовательное чте- ние, до тех пор, пока не будет утверждено обратное. На каждом шаге цикла яд- ро запоминает номер следующего логического блока в копии индекса, хранящейся в памяти, и на следующем шаге сравнивает номер текущего логического блока со значением, запомненным ранее. Если эти номера равны, ядро вычисляет номер физического блока для чтения с продвижением и сохраняет это значение в прос- транстве процесса для использования в алгоритме breada. Конечно же, пока процесс не считал конец блока, ядро не запустит алгоритм чтения с продвиже- нием для следующего блока. Обратившись к Рисунку 4.9, вспомним, что номера некоторых блоков в ин- дексе или в блоках косвенной адресации могут иметь нулевое значение, пусть даже номера последующих блоков и ненулевые. Если процесс попытается прочи- тать данные из такого блока, ядро выполнит запрос, выделяя произвольный бу- фер в цикле read, очищая его содержимое и копируя данные из него по адресу пользователя. Этот случай не имеет ничего общего с тем случаем, когда про- цесс обнаруживает конец файла, говорящий о том, что после этого места запись информации никогда не производилась. Обнаружив конец файла, ядро не возвра- 93 щает процессу никакой информации (см. упражнение 5.1). Когда процесс вызывает системную функцию read, ядро блокирует индекс на время выполнения вызова. Впоследствии, этот процесс может приостановиться во время чтения из буфера, ассоциированного с данными или с блоками косвенной адресации в индексе. Если еще одному процессу дать возможность вносить изме- нения в файл в то время, когда первый процесс приостановлен, функция read может возвратить несогласованные данные. Например, процесс может считать из файла несколько блоков; если он приостановился во время чтения первого бло- ка, а второй процесс собирался вести запись в другие блоки, возвращаемые данные будут содержать старые данные вперемешку с новыми. Таким образом, ин- декс остается заблокированным на все время выполнения вызова функции read для того, чтобы процессы могли иметь целостное видение файла, то есть виде- ние того образа, который был у файла перед вызовом функции. Ядро может выгружать процесс, ведущий чтение, в режим задачи на время между двумя вызовами функций и планировать запуск других процессов. Так как по окончании выполнения системной функции с индекса снимается блокировка, ничто не мешает другим процессам обращаться к файлу и изменять его содержи- мое. Со стороны системы было бы несправедливо держать индекс заблокированным все время от момента, когда процесс открыл файл, и до того момента, когда файл будет закрыт этим процессом, поскольку тогда один процесс будет держать все время файл открытым, тем самым не давая другим процессам возможности об- ратиться к файлу. Если файл имеет имя "/etc/ passwd", то есть является фай- лом, используемым в процессе регистрации для проверки пользовательского па- роля, один пользователь может умышленно (или, возможно, неумышленно) воспре- пятствовать регистрации в системе всех остальных пользователей. Чтобы пре- дотвратить возникновение подобных проблем, ядро снимает с индекса блокировку по окончании выполнения каждого вызова системной функции, использующей ин- декс. Если второй процесс внесет изменения в файл между двумя вызовами функ- ции read, производимыми первым процессом, первый процесс может прочитать непредвиденные данные, однако структуры данных ядра сохранят свою согласо- ванность. Предположим, к примеру, что ядро выполняет два процесса, конкурирующие +------------------------------------------------------------+ | #include | | /* процесс A */ | | main() | | { | | int fd; | | char buf[512]; | | fd = open("/etc/passwd",O_RDONLY); | | read(fd,buf,sizeof(buf)); /* чтение1 */ | | read(fd,buf,sizeof(buf)); /* чтение2 */ | | } | | | | /* процесс B */ | | main() | | { | | int fd,i; | | char buf[512]; | | for (i = 0; i < sizeof(buf); i++) | | buf[i] = 'a'; | | fd = open("/etc/passwd",O_WRONLY); | | write(fd,buf,sizeof(buf)); /* запись1 */ | | write(fd,buf,sizeof(buf)); /* запись2 */ | | } | +------------------------------------------------------------+ Рисунок 5.8. Процессы, ведущие чтение и запись 94 между собой (Рисунок 5.8). Если допустить, что оба процесса выполняют опера- цию open до того, как любой из них вызывает системную функцию read или write, ядро может выполнять функции чтения и записи в любой из шести после- довательностей: чтение1, чтение2, запись1, запись2, или чтение1, запись1, чтение2, запись2, или чтение1, запись1, запись2, чтение2 и т.д. Состав ин- формации, считываемой процессом A, зависит от последовательности, в которой система выполняет функции, вызываемые двумя процессами; система не гаранти- рует, что данные в файле останутся такими же, какими они были после открытия файла. Использование возможности захвата файла и записей (раздел 5.4) позво- ляет процессу гарантировать сохранение целостности файла после его открытия. Наконец, программа на Рисунке 5.9 показывает, как процесс может откры- вать файл более одного раза и читать из него, используя разные файловые дес- крипторы. Ядро работает со значениями смещений в таблице файлов, ассоцииро- ванными с двумя файловыми дескрипторами, независимо, и поэтому массивы buf1 и buf2 будут по завершении выполнения процесса идентичны друг другу при ус- ловии, что ни один процесс в это время не производил запись в файл "/etc/passwd". 5.3 WRIТЕ Синтаксис вызова системной функции write (писать): number = write(fd,buffer,count); где переменные fd, buffer, count и number имеют тот же смысл, что и для вы- зова системной функции read. Алгоритм записи в обычный файл похож на алго- ритм чтения из обычного файла. Однако, если в файле отсутствует блок, соот- ветствующий смещению в байтах до места, куда должна производиться запись, ядро выделяет блок, используя алгоритм alloc, и присваивает ему номер в со- ответствии с точным указанием места в таблице содержимого индекса. Если сме- щение в байтах совпадает со смещением для блока косвенной адресации, ядру, возможно, придется выделить несколько блоков для использования их в качестве блоков косвенной адресации и информаци- +------------------------------------------------------------+ | #include | | main() | | { | | int fd1,fd2; | | char buf1[512],buf2[512]; | | | | fd1 = open("/etc/passwd",O_RDONLY); | | fd2 = open("/etc/passwd",O_RDONLY); | | read(fd1,buf1,sizeof(buf1)); | | read(fd2,buf2,sizeof(buf2)); | | } | +------------------------------------------------------------+ Рисунок 5.9. Чтение из файла с использованием двух дескрипторов онных блоков. Индекс блокируется на все время выполнения функции write, так как ядро может изменить индекс, выделяя новые блоки; разрешение другим про- цессам обращаться к файлу может разрушить индекс, если несколько процессов выделяют блоки одновременно, используя одни и те же значения смещений. Когда запись завершается, ядро корректирует размер файла в индексе, если файл уве- 95 личился в размере. Предположим, к примеру, что процесс записывает в файл байт с номером 10240, наибольшим номером среди уже записанных в файле. Обратившись к байту в файле по алгоритму bmap, ядро обнаружит, что в файле отсутствует не только соответствующий этому байту блок, но также и нужный блок косвенной адреса- ции. Ядро назначает дисковый блок в качестве блока косвенной адресации и за- писывает номер блока в копии индекса, хранящейся в памяти. Затем оно выделя- ет дисковый блок под данные и записывает его номер в первую позицию вновь созданного блока косвенной адресации. Так же, как в алгоритме read, ядро входит в цикл, записывая на диск по одному блоку на каждой итерации. При этом на каждой итерации ядро определя- ет, будет ли производиться запись целого блока или только его части. Если записывается только часть блока, ядро в первую очередь считывает блок с дис- ка для того, чтобы не затереть те части, которые остались без изменений, а если записывается целый блок, ядру не нужно читать весь блок, так как в лю- бом случае оно затрет предыдущее содержимое блока. Запись осуществляется поблочно, однако ядро использует отложенную запись (раздел 3.4) данных на диск, запоминая их в кеше на случай, если они понадобятся вскоре другому процессу для чтения или записи, а также для того, чтобы избежать лишних об- ращений к диску. Отложенная запись, вероятно, наиболее эффективна для кана- лов, так как другой процесс читает канал и удаляет из него данные (раздел 5.12). Но даже для обычных файлов отложенная запись эффективна, если файл создается временно и вскоре будет прочитан. Например, многие программы, та- кие как редакторы и электронная почта, создают временные файлы в каталоге "/tmp" и быстро удаляют их. Использование отложенной записи может сократить количество обращений к диску для записи во временные файлы. 5.4 ЗАХВАТ ФАЙЛА И ЗАПИСИ В первой версии системы UNIX, разработанной Томпсоном и Ричи, отсутство- вал внутренний механизм, с помощью которого процессу мог бы быть обеспечен исключительный доступ к файлу. Механизм захвата был признан излишним, пос- кольку, как отмечает Ричи, "мы не имеем дела с большими базами данных, сос- тоящими из одного файла, которые поддерживаются независимыми процессами" (см. [Ritchie 81]). Для того, чтобы повысить привлекательность системы UNIX для коммерческих пользователей, работающих с базами данных, в версию V сис- темы ныне включены механизмы захвата файла и записи. Захват файла - это средство, позволяющее запретить другим процессам производить чтение или за- пись любой части файла, а захват записи - это средство, позволяющее запре- тить другим процессам производить ввод-вывод указанных записей (частей файла между указанными смещениями). В упражнении 5.9 рассматривается реализация механизма захвата файла и записи. 5.5 УКАЗАНИЕ МЕСТА В ФАЙЛЕ, ГДЕ БУДЕТ ВЫПОЛНЯТЬСЯ ВВОД-ВЫВОД - LSEEК Обычное использование системных функций read и write обеспечивает после- довательный доступ к файлу, однако процессы могут использовать вызов систем- ной функции lseek для указания места в файле, где будет производиться ввод-вывод, и осуществления произвольного доступа к файлу. Синтаксис вызова системной функции: position = lseek(fd,offset,reference); где fd - дескриптор файла, идентифицирующий файл, offset - смещение в бай- тах, а reference указывает, является ли значение offset смещением от начала файла, смещением от текущей позиции ввода-вывода или смещением от конца фай- ла. Возвращаемое значение, position, является смещением в байтах до места, 96 где будет начинаться следующая операция чтения или записи. Например, в прог- рамме, приведенной на Рисунке 5.10, процесс открывает файл, считывает байт, а затем вызывает функцию lseek, чтобы заменить значение поля смещения в таб- лице файлов величиной, равной 1023 (с переменной reference, имеющей значение 1), и выполняет цикл. Таким образом, программа считывает каждый 1024-й байт файла. Если reference имеет значение 0, ядро осуществляет поиск от начала файла, а если 2, ядро ведет поиск от конца файла. Функция lseek ничего не должна делать, кроме операции поиска, которая позиционирует головку чте- ния-записи на указанный дисковый сектор. Для того, чтобы выполнить функцию lseek, ядро просто выбирает значение смещения из таблицы файлов; в последую- щих вызовах функций read и write смещение из таблицы файлов используется в качестве начального смещения. 5.6 CLOSЕ Процесс закрывает открытый файл, когда процессу больше не нужно обра- щаться к нему. Синтаксис вызова системной функции close (закрыть): +--------------------------------------------------------+ | #include | | main(argc,argv) | | int argc; | | char *argv[]; | | { | | int fd,skval; | | char c; | | | | if(argc != 2) | | exit(); | | fd = open(argv[1],O_RDONLY); | | if (fd == -1) | | exit(); | | while ((skval = read(fd,&c,1)) == 1) | | { | | printf("char %c\n",c); | | skval = lseek(fd,1023L,1); | | printf("new seek val %d\n",skval); | | } | | } | +--------------------------------------------------------+ Рисунок 5.10. Программа, содержащая вызов системной функции lseek close(fd); где fd - дескриптор открытого файла. Ядро выполняет операцию закрытия, ис- пользуя дескриптор файла и информацию из соответствующих записей в таблице файлов и таблице индексов. Если счетчик ссылок в записи таблицы файлов имеет значение, большее, чем 1, в связи с тем, что были обращения к функциям dup или fork, то это означает, что на запись в таблице файлов делают ссылку дру- гие пользовательские дескрипторы, что мы увидим далее; ядро уменьшает значе- ние счетчика и операция закрытия завершается. Если счетчик ссылок в таблице файлов имеет значение, равное 1, ядро освобождает запись в таблице и индекс в памяти, ранее выделенный системной функцией open (алгоритм iput). Если другие процессы все еще ссылаются на индекс, ядро уменьшает значение счетчи- ка ссылок на индекс, но оставляет индекс процессам; в противном случае ин- декс освобождается для переназначения, так как его счетчик ссылок содержит 0. Когда выполнение системной функции close завершается, запись в таблице 97 пользовательских дескрипторов файла становится пустой. Попытки процесса ис- пользовать данный дескриптор заканчиваются ошибкой до тех пор, пока дескрип- тор не будет переназначен другому файлу в результате выполнения другой сис- темной функции. Когда процесс завершается, ядро проверяет наличие активных пользовательских дескрипторов файла, принадлежавших процессу, и закрывает каждый из них. Таким образом, ни один процесс не может оставить файл откры- тым после своего завершения. На Рисунке 5.11, например, показаны записи из таблиц, приведенных на Ри- сунке 5.4, после того, как второй процесс закрывает соответствующие им фай- лы. Записи, соответствующие дескрипторам 3 и 4 в таблице пользовательских пользовательские дескрип- торы файла таблица файлов таблица индексов +---------+ +------------+ +--------------+ 0| | | | | - | +---------+ | | | - | 1| | | | | - | +---------+ +------------+ | - | 2| | | - | | - | +---------+ | - | | - | 3| ----+----+ | - | | - | +---------+ | | - | +--------------+ 4| ----+---+| | - | +---->| счет- | +---------+ || | - | | | чик (/etc/ | 5| ----+--+|| +------------+ | +-->| 2 passwd)| +---------+ ||| | счет- | | | +--------------+ | - | ||+-->| чик +--+ | | - | | - | || | 1 | | | - | | - | || +------------+ | | - | +---------+ || | - | | | - | || | - | | | - | +---------+ || | - | | | - | 0| | || +------------+ | | - | +---------+ || | счет- | | | - | 1| | |+--->| чик +----|+ | - | +---------+ | | 1 | || | - | 2| | | +------------+ || | - | +---------+ | | - | || +--------------+ 3| NULL | | | - | || | счет- | +---------+ | | - | |+->| чик (local)| 4| NULL | | | - | | | 1 | +---------+ | | - | | +--------------+ 5| | | | - | | | - | +---------+ | +------------+ | | - | | - | | | счетчик 0 | | | - | +---------+ | +------------+ | | - | | | - | | +--------------+ | | - | | | счет- | | +------------+ | | чик (private)| | | счетчик 1 | | | 0 | +---->| +----+ +--------------+ +------------+ | - | | - | +--------------+ | - | +------------+ | счетчик 0 | +------------+ Рисунок 5.11. Таблицы после закрытия файла 98 дескрипторов файлов, пусты. Счетчики в записях таблицы файлов теперь имеют значение 0, а сами записи пусты. Счетчики ссылок на файлы "/etc/passwd" и "private" в индексах также уменьшились. Индекс для файла "private" находится в списке свободных индексов, поскольку счетчик ссылок на него равен 0, но запись о нем не пуста. Если еще какой-нибудь процесс обратится к файлу "private", пока индекс еще находится в списке свободных индексов, ядро востребует индекс обратно, как показано в разделе 4.1.2. 5.7 СОЗДАНИЕ ФАЙЛА Системная функция open дает процессу доступ к существующему файлу, а системная функция creat создает в системе новый файл. Синтаксис вызова сис- темной функции creat: fd = creat(pathname,modes); где переменные pathname, modes и fd имеют тот же смысл, что и в системной функции open. Если прежде такого файла не существовало, ядро создает новый файл с указанным именем и указанными правами доступа к нему; если же такой файл уже существовал, ядро усекает файл (освобождает все существующие блоки +------------------------------------------------------------+ | алгоритм creat | | входная информация: имя файла | | установки прав доступа к файлу | | выходная информация: дескриптор файла | | { | | получить индекс для данного имени файла (алгоритм namei);| | если (файл уже существует) | | { | | если (доступ не разрешен) | | { | | освободить индекс (алгоритм iput); | | возвратить (ошибку); | | } | | } | | в противном случае /* файл еще не существует */ | | { | | назначить свободный индекс из файловой системы (алго- | | ритм ialloc); | | создать новую точку входа в родительском каталоге: | | включить имя нового файла и номер вновь назначенного | | индекса; | | } | | выделить для индекса запись в таблице файлов, инициализи-| | ровать счетчик; | | если (файл существовал к моменту создания) | | освободить все блоки файла (алгоритм free); | | снять блокировку (с индекса); | | возвратить (пользовательский дескриптор файла); | | } | +------------------------------------------------------------+ Рисунок 5.12. Алгоритм создания файла 99 данных и устанавливает размер файла равным 0) при наличии соответствующих прав доступа к нему (***). На Рисунке 5.12 приведен алгоритм создания файла. Ядро проводит синтаксический анализ имени пути поиска, используя алго- ритм namei и следуя этому алгоритму буквально, когда речь идет о разборе имен каталогов. Однако, когда дело касается последней компоненты имени пути поиска, а именно идентификатора создаваемого файла, namei отмечает смещение в байтах до первой пустой позиции в каталоге и запоминает это смещение в пространстве процесса. Если ядро не обнаружило в каталоге компоненту имени пути поиска, оно в ко- нечном счете впишет имя компоненты в только что найденную пустую позицию. Если в каталоге нет пустых позиций, ядро запоминает смещение до конца ката- лога и создает новую позицию там. Оно также запоминает в пространстве про- цесса индекс просматриваемого каталога и держит индекс заблокированным; ка- талог становится по отношению к новому файлу родительским каталогом. Ядро не записывает пока имя нового файла в каталог, так что в случае возникновения ошибок ядру приходится меньше переделывать. Оно проверяет наличие у процесса разрешения на запись в каталог. Поскольку процесс будет производить запись в каталог в результате выполнения функции creat, наличие разрешения на запись в каталог означает, что процессам дозволяется создавать файлы в каталоге. Предположив, что под данным именем ранее не существовало файла, ядро назначает новому файлу индекс, используя алгоритм ialloc (раздел 4.6). Затем оно записывает имя нового файла и номер вновь выделенного индекса в роди- тельский каталог, а смещение в байтах сохраняет в пространстве процесса. Впоследствии ядро освобождает индекс родительского каталога, удерживаемый с того времени, когда в каталоге производился поиск имени файла. Родительский каталог теперь содержит имя нового файла и его индекс. Ядро записывает вновь выделенный индекс на диск (алгоритм bwrite), прежде чем записать на диск ка- талог с новым именем. Если между операциями записи индекса и каталога прои- зойдет сбой системы, в итоге окажется, что выделен индекс, на который не ссылается ни одно из имен путей поиска в системе, однако система будет функ- ционировать нормально. Если, с другой стороны, каталог был записан раньше вновь выделенного индекса и сбой системы произошел между ними, файловая сис- тема будет содержать имя пути поиска, ссылающееся на неверный индекс (более подробно об этом см. в разделе 5.16.1). Если данный файл уже существовал до вызова функции creat, ядро обнаружи- вает его индекс во время поиска имени файла. Старый файл должен позволять процессу производить запись в него, чтобы можно было создать "новый" файл с тем же самым именем, так как ядро изменяет содержимое файла при выполнении функции creat: оно усекает файл, освобождая все информационные блоки по ал- горитму free, так что файл будет выглядеть как вновь созданный. Тем не ме- нее, владелец и права доступа к файлу остаются прежними: ядро не передает право собственности на файл владельцу процесса и игнорирует права доступа, указанные процессом в вызове функции. Наконец, ядро не проверяет наличие разрешения на запись в каталог, являющийся родительским для существующего файла, поскольку оно не меняет содержимого каталога. Функция creat продолжает работу, выполняя тот же алгоритм, что и функция open. Ядро выделяет созданному файлу запись в таблице файлов, чтобы процесс мог читать из файла, а также запись в таблице пользовательских дескрипторов файла, и в конце концов возвращает указатель на последнюю запись в виде пользовательского дескриптора файла. --------------------------------------- (***) Системная функция open имеет два флага, O_CREAT (создание) и O_TRUNC (усечение). Если процесс устанавливает в вызове функции флаг O_CREAT и файл не существует, ядро создаст файл. Если файл уже существует, он не будет усечен, если только не установлен флаг O_TRUNC. 100 5.8 СОЗДАНИЕ СПЕЦИАЛЬНЫХ ФАЙЛОВ Системная функция mknod создает в системе специальные файлы, в число ко- торых включаются поименованные каналы, файлы устройств и каталоги. Она похо- жа на функцию creat в том, что ядро выделяет для файла индекс. Синтаксис вы- зова системной функции mknod: mknod(pathname,type and permissions,dev) где pathname - имя создаваемой вершины в иерархической структуре файловой системы, type and permissions - тип вершины (например, каталог) и права дос- тупа к создаваемому файлу, а dev указывает старший и младший номера устройс- тва для блочных и символьных специальных файлов (глава 10). На Рисунке 5.13 приведен алгоритм, реализуемый функцией mknod при создании новой вершины. +------------------------------------------------------------+ | алгоритм создания новой вершины | | входная информация: вершина (имя файла) | | тип файла | | права доступа | | старший, младший номера устройства | | (для блочных и символьных специальных | | файлов) | | выходная информация: отсутствует | | { | | если (новая вершина не является поименованным каналом | | и пользователь не является суперпользователем) | | возвратить (ошибку); | | получить индекс вершины, являющейся родительской для | | новой вершины (алгоритм namei); | | если (новая вершина уже существует) | | { | | освободить родительский индекс (алгоритм iput); | | возвратить (ошибку); | | } | | назначить для новой вершины свободный индекс из файловой| | системы (алгоритм ialloc); | | создать новую запись в родительском каталоге: включить | | имя новой вершины и номер вновь назначенного индекса; | | освободить индекс родительского каталога (алгоритм | | iput); | | если (новая вершина является блочным или символьным спе-| | циальным файлом) | | записать старший и младший номера в структуру индек-| | са; | | освободить индекс новой вершины (алгоритм iput); | | } | +------------------------------------------------------------+ Рисунок 5.13. Алгоритм создания новой вершины Ядро просматривает файловую систему в поисках имени файла, который оно собирается создать. Если файл еще пока не существует, ядро назначает ему но- вый индекс на диске и записывает имя нового файла и номер индекса в роди- тельский каталог. Оно устанавливает значение поля типа файла в индексе, ука- зывая, что файл является каналом, каталогом или специальным файлом. Наконец, если файл является специальным файлом устройства блочного или символьного типа, ядро записывает в индекс старший и младший номера устройства. Если функция mknod создает каталог, он будет существовать по завершении выполне- ния функции, но его содержимое будет иметь неверный формат (в каталоге будут 101 отсутствовать записи с именами "." и ".."). В упражнении 5.33 рассматривают- ся шаги, необходимые для преобразования содержимого каталога в правильный формат. +------------------------------------------------------------+ | алгоритм смены каталога | | входная информация: имя нового каталога | | выходная информация: отсутствует | | { | | получить индекс для каталога с новым именем (алгоритм | | namei); | | если (индекс не является индексом каталога или же про- | | цессу не разрешен доступ к файлу) | | { | | освободить индекс (алгоритм iput); | | возвратить (ошибку); | | } | | снять блокировку с индекса; | | освободить индекс прежнего текущего каталога (алгоритм | | iput); | | поместить новый индекс в позицию для текущего каталога | | в пространстве процесса; | | } | +------------------------------------------------------------+ Рисунок 5.14. Алгоритм смены текущего каталога 5.9 СМЕНА ТЕКУЩЕГО И КОРНЕВОГО КАТАЛОГА Когда система загружается впервые, нулевой процесс делает корневой ката- лог файловой системы текущим на время инициализации. Для индекса корневого каталога нулевой процесс выполняет алгоритм iget, сохраняет этот индекс в пространстве процесса в качестве индекса текущего каталога и снимает с ин- декса блокировку. Когда с помощью функции fork создается новый процесс, он наследует текущий каталог старого процесса в своем адресном пространстве, а ядро, соответственно, увеличивает значение счетчика ссылок в индексе. Алгоритм chdir (Рисунок 5.14) изменяет имя текущего каталога для процес- са. Синтаксис вызова системной функции chdir: chdir(pathname); где pathname - каталог, который становится текущим для процесса. Ядро анали- зирует имя каталога, используя алгоритм namei, и проверяет, является ли дан- ный файл каталогом и имеет ли владелец процесса право доступа к каталога. Ядро снимает с нового индекса блокировку, но удерживает индекс в качестве выделенного и оставляет счетчик ссылок без изменений, освобождает индекс прежнего текущего каталога (алгоритм iput), хранящийся в пространстве про- цесса, и запоминает в этом пространстве новый индекс. После смены процессом текущего каталога алгоритм namei использует индекс в качестве начального ка- талога при анализе всех имен путей, которые не берут начало от корня. По окончании выполнения системной функции chdir счетчик ссылок на индекс нового каталога имеет значение, как минимум, 1, а счетчик ссылок на индекс прежнего текущего каталога может стать равным 0. В этом отношении функция chdir похо- жа на функцию open, поскольку обе функции обращаются к файлу и оставляют его индекс в качестве выделенного. Индекс, выделенный во время выполнения функ- ции chdir, освобождается только тогда, когда процесс меняет текущий каталог еще раз или когда процесс завершается. 102 Процессы обычно используют глобальный корневой каталог файловой системы для всех имен путей поиска, начинающихся с "/". Ядро хранит глобальную пере- менную, которая указывает на индекс глобального корня, выделяемый по алго- ритму iget при загрузке системы. Процессы могут менять свое представление о корневом каталоге файловой системы с помощью системной функции chroot. Это бывает полезно, если пользователю нужно создать модель обычной иерархической структуры файловой системы и запустить процессы там. Синтаксис вызова функ- ции: chroot(pathname); где pathname - каталог, который впоследствии будет рассматриваться ядром в качестве корневого каталога для процесса. Выполняя функцию chroot, ядро сле- дует тому же алгоритму, что и при смене текущего каталога. Оно запоминает индекс нового корня в пространстве процесса, снимая с индекса блокировку по завершении выполнения функции. Тем не менее, так как умолчание на корень для ядра хранится в глобальной переменной, ядро освобождает индекс прежнего кор- ня не автоматически, а только после того, как оно само или процесс-предок исполнят вызов функции chroot. Новый индекс становится логическим корнем файловой системы для процесса (и для всех порожденных им процессов) и это означает, что все пути поиска в алгоритме namei, начинающиеся с корня ("/"), возьмут начало с данного индекса и что все попытки войти в каталог ".." над корнем приведут к тому, что рабочим каталогом процесса останется новый ко- рень. Процесс передает всем вновь порождаемым процессам этот каталог в ка- честве корневого подобно тому, как передает свой текущий каталог. 5.10 СМЕНА ВЛАДЕЛЬЦА И РЕЖИМА ДОСТУПА К ФАЙЛУ Смена владельца или режима (прав) доступа к файлу является операцией, производимой над индексом, а не над файлом. Синтаксис вызова соответствующих системных функций: chown(pathname,owner,group) chmod(pathname,mode) Для того, чтобы поменять владельца файла, ядро преобразует имя файла в идентификатор индекса, используя алгоритм namei. Владелец процесса должен быть суперпользователем или владельцем файла (процесс не может распоряжаться тем, что не принадлежит ему). Затем ядро назначает файлу нового владельца и нового группового пользователя, сбрасывает флаги прежних установок (см. раз- дел 7.5) и освобождает индекс по алгоритму iput. После этого прежний владе- лец теряет право "собственности" на файл. Для того, чтобы поменять режим доступа к файлу, ядро выполняет процедуру, подобную описанной, вместо кода владельца меняя флаги, устанавливающие режим доступа. 5.11 STAT И FSTАТ Системные функции stat и fstat позволяют процессам запрашивать информа- цию о статусе файла: типе файла, владельце файла, правах доступа, размере файла, числе связей, номере индекса и времени доступа к файлу. Синтаксис вы- зова функций: stat(pathname,statbuffer); fstat(fd,statbuffer); где pathname - имя файла, fd - дескриптор файла, возвращаемый функцией open, statbuffer - адрес структуры данных пользовательского процесса, где будет 103 храниться информация о статусе файла после завершения выполнения вызова. Системные функции просто переписывают поля из индекса в структуру statbuffer. Программа на Рисунке 5.33 иллюстрирует использование функций stat и fstat. Вызывает канал Не могут совместно использовать - канал - - - - - - - - - - Процесс A - - | - - +-------------+--------------+ - - | | - Процесс B Процесс C | +-------+-------+ | | Процесс D - Процесс E - - - - - - - - - - Совместно используют канал Рисунок 5.15. Дерево процессов и совместное использование каналов 5.12 КАНАЛЫ Каналы позволяют передавать данные между процессами в порядке поступле- ния ("первым пришел - первым вышел"), а также синхронизировать выполнение процессов. Их использование дает процессам возможность взаимодействовать между собой, пусть даже не известно, какие процессы находятся на другом кон- це канала. Традиционная реализация каналов использует файловую систему для хранения данных. Различают два вида каналов: поименованные каналы и, за от- сутствием лучшего термина, непоименованные каналы, которые идентичны между собой во всем, кроме способа первоначального обращения к ним процессов. Для поименованных каналов процессы используют системную функцию open, а систем- ную функцию pipe - для создания непоименованного канала. Впоследствии, при работе с каналами процессы пользуются обычными системными функциями для фай- лов, такими как read, write и close. Только связанные между собой процессы, являющиеся потомками того процесса, который вызвал функцию pipe, могут раз- делять доступ к непоименованным каналам. Например (см. Рисунок 5.15), если процесс B создает канал и порождает процессы D и E, эти три процесса разде- ляют между собой доступ к каналу, в отличие от процессов A и C. Однако, все процессы могут обращаться к поименованному каналу независимо от взаимоотно- шений между ними, при условии наличия обычных прав доступа к файлу. Посколь- ку непоименованные каналы встречаются чаще, они будут рассмотрены первыми. 5.12.1 Системная функция pipе Синтаксис вызова функции создания канала: pipe(fdptr); 104 где fdptr - указатель на массив из двух целых переменных, в котором будут храниться два дескриптора файла для чтения из канала и для записи в канал. Поскольку ядро реализует каналы внутри файловой системы и поскольку канал не существует до того, как его будут использовать, ядро должно при создании ка- нала назначить ему индекс. Оно также назначает для канала пару пользователь- ских дескрипторов и соответствующие им записи в таблице файлов: один из дес- крипторов для чтения из канала, а другой для записи в канал. Поскольку ядро пользуется таблицей файлов, интерфейс для вызова функций read, write и др. согласуется с интерфейсом для обычных файлов. В результате процессам нет на- добности знать, ведут ли они чтение или запись в обычный файл или в канал. +------------------------------------------------------------+ | алгоритм pipe | | входная информация: отсутствует | | выходная информация: дескриптор файла для чтения | | дескриптор файла для записи | | { | | назначить новый индекс из устройства канала (алгоритм | | ialloc); | | выделить одну запись в таблице файлов для чтения, одну -| | для переписи; | | инициализировать записи в таблице файлов таким образом, | | чтобы они указывали на новый индекс; | | выделить один пользовательский дескриптор файла для чте-| | ния, один - для записи, проинициализировать их таким | | образом, чтобы они указывали на соответствующие точки | | входа в таблице файлов; | | установить значение счетчика ссылок в индексе равным 2; | | установить значение счетчика числа процессов, производя-| | щих чтение, и процессов, производящих запись, равным 1;| | } | +------------------------------------------------------------+ Рисунок 5.16. Алгоритм создания каналов (непоименованных) На Рисунке 5.16 показан алгоритм создания непоименованных каналов. Ядро назначает индекс для канала из файловой системы, обозначенной как "устройст- во канала", используя алгоритм ialloc. Устройство канала - это именно та файловая система, из которой ядро может назначать каналам индексы и выделять блоки для данных. Администраторы системы указывают устройство канала при конфигурировании системы и эти устройства могут совпадать у разных файловых систем. Пока канал активен, ядро не может переназначить индекс канала и ин- формационные блоки канала другому файлу. Затем ядро выделяет в таблице файлов две записи, соответствующие деск- рипторам для чтения и записи в канал, и корректирует "бухгалтерскую" инфор- мацию в копии индекса в памяти. В каждой из выделенных записей в таблице файлов хранится информация о том, сколько экземпляров канала открыто для чтения или записи (первоначально 1), а счетчик ссылок в индексе указывает, сколько раз канал был "открыт" (первоначально 2 - по одному для каждой запи- си таблицы файлов). Наконец, в индексе записываются смещения в байтах внутри канала до места, где будет начинаться следующая операция записи или чтения. Благодаря сохранению этих смещений в индексе имеется возможность производить доступ к данным в канале в порядке их поступления в канал ("первым пришел - первым вышел"); этот момент является особенностью каналов, поскольку для обычных файлов смещения хранятся в таблице файлов. Процессы не могут менять эти смещения с помощью системной функции lseek и поэтому произвольный доступ к данным канала невозможен. 105 5.12.2 Открытие поименованного канала Поименованный канал - это файл, имеющий почти такую же семантику, как и непоименованный канал, за исключением того, что этому файлу соответствует запись в каталоге и обращение к нему производится по имени. Процессы откры- вают поименованные каналы так же, как и обычные файлы, и, следовательно, с помощью поименованных каналов могут взаимодействовать между собой даже про- цессы, не имеющие друг к другу близкого отношения. Поименованные каналы пос- тоянно присутствуют в иерархии файловой системы (из которой они удаляются с помощью системной функции unlink), а непоименованные каналы являются времен- ными: когда все процессы заканчивают работу с каналом, ядро отбирает назад его индекс. Алгоритм открытия поименованного канала идентичен алгоритму открытия обычного файла. Однако, перед выходом из функции ядро увеличивает значения тех счетчиков в индексе, которые показывают количество процессов, открывших поименованный канал для чтения или записи. Процесс, открывающий поименован- ный канал для чтения, приостановит свое выполнение до тех пор, пока другой процесс не откроет поименованный канал для записи, и наоборот. Не имеет смысла открывать канал для чтения, если процесс не надеется получить данные; то же самое касается записи. В зависимости от того, открывает ли процесс по- именованный канал для записи или для чтения, ядро возобновляет выполнение тех процессов, которые были приостановлены в ожидании процесса, записывающе- го в поименованный канал или считывающего данные из канала (соответственно). Если процесс открывает поименованный канал для чтения, причем процесс, записывающий в канал, существует, открытие завершается. Или если процесс от- крывает поименованный файл с параметром "no delay", функция open возвращает управление немедленно, даже когда нет ни одного записывающего процесса. Во всех остальных случаях процесс приостанавливается до тех пор, пока записыва- ющий процесс не откроет канал. Аналогичные правила действуют для процесса, открывающего канал для записи. 5.12.3 Чтение из каналов и запись в каналы Канал следует рассматривать под таким углом зрения, что процессы ведут запись на одном конце канала, а считывают данные на другом конце. Как уже говорилось выше, процессы обращаются к данным в канале в порядке их поступ- ления в канал; это означает, что очередность, в которой данные записываются в канал, совпадает с очередностью их выборки из канала. Совпадение количест- ва процессов, считывающих данные из канала, с количеством процессов, ведущих запись в канал, совсем не обязательно; если одно число отличается от другого более, чем на 1, процессы должны координировать свои действия по использова- нию канала с помощью других механизмов. Ядро обращается к данным в канале точно так же, как и к данным в обычном файле: оно сохраняет данные на уст- ройстве канала и назначает каналу столько блоков, сколько нужно, во время выполнения функции write. Различие в выделении памяти для канала и для +--------------------+--------------------+ | Указатель чтения | Указатель записи | +----------+---------+----------+---------+ | +----------------+ +-- | --------------+ v v +---+---+---+---+---+---+---+---+---+---+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | +---+---+---+---+---+---+---+---+---+---+ Блоки прямой адресации в индексе Рисунок 5.17. Логическая схема чтения и записи в канал 106 обычного файла состоит в том, что канал использует в индексе только блоки прямой адресации в целях повышения эффективности работы, хотя это и наклады- вает определенные ограничения на объем данных, одновременно помещающихся в канале. Ядро работает с блоками прямой адресации индекса как с циклической очередью, поддерживая в своей структуре указатели чтения и записи для обес- печения очередности обслуживания "первым пришел - первым вышел" (Рисунок 5.17). Рассмотрим четыре примера ввода-вывода в канал: запись в канал, в кото- ром есть место для записи данных; чтение из канала, в котором достаточно данных для удовлетворения запроса на чтение; чтение из канала, в котором данных недостаточно; и запись в канал, где нет места для записи. Рассмотрим первый случай, в котором процесс ведет запись в канал, имею- щий место для ввода данных: сумма количества записываемых байт с числом байт, уже находящихся в канале, меньше или равна емкости канала. Ядро следу- ет алгоритму записи данных в обычный файл, за исключением того, что оно уве- личивает размер канала автоматически после каждого выполнения функции write, поскольку по определению объем данных в канале растет с каждой операцией за- писи. Иначе происходит увеличение размера обычного файла: процесс увеличива- ет размер файла только тогда, когда он при записи данных переступает границу конца файла. Если следующее смещение в канале требует использования блока косвенной адресации, ядро устанавливает значение смещения в пространстве процесса таким образом, чтобы оно указывало на начало канала (смещение в байтах, равное 0). Ядро никогда не затирает данные в канале; оно может сбро- сить значение смещения в 0, поскольку оно уже установило, что данные не бу- дут переполнять емкость канала. Когда процесс запишет в канал все свои дан- ные, ядро откорректирует значение указателя записи (в индексе) канала таким образом, что следующий процесс продолжит запись в канал с того места, где остановилась предыдущая операция write. Затем ядро возобновит выполнение всех других процессов, приостановленных в ожидании считывания данных из ка- нала. Когда процесс запускает функцию чтения из канала, он проверяет, пустой ли канал или нет. Если в канале есть данные, ядро считывает их из канала так, как если бы канал был обычным файлом, выполняя соответствующий алго- ритм. Однако, начальным смещением будет значение указателя чтения, храняще- гося в индексе и показывающего протяженность прочитанных ранее данных. После считывания каждого блока ядро уменьшает размер канала в соответствии с коли- чеством считанных данных и устанавливает значение смещения в пространстве процесса так, чтобы при достижении конца канала оно указывало на его начало. Когда выполнение системной функции read завершается, ядро возобновляет вы- полнение всех приостановленных процессов записи и запоминает текущее значе- ние указателя чтения в индексе (а не в записи таблицы файлов). Если процесс пытается считать больше информации, чем фактически есть в канале, функция read завершится успешно, возвратив все данные, находящиеся в данный момент в канале, пусть даже не полностью выполнив запрос пользовате- ля. Если канал пуст, процесс обычно приостанавливается до тех пор, пока ка- кой-нибудь другой процесс не запишет данные в канал, после чего все приоста- новленные процессы, ожидающие ввода данных, возобновят свое выполнение и начнут конкурировать за чтение из канала. Если, однако, процесс открывает поименованный канал с параметром "no delay" (без задержки), функция read возвратит управление немедленно, если в канале отсутствуют данные. Операции чтения и записи в канал имеют ту же семантику, что и аналогичные операции для терминальных устройств (глава 10), она позволяет процессам игнорировать тип тех файлов, с которыми эти программы имеют дело. Если процесс ведет запись в канал и в канале нет места для всех данных, ядро помечает индекс и приостанавливает выполнение процесса до тех пор, пока канал не начнет очищаться от данных. Когда впоследствии другой процесс будет считывать данные из канала, ядро заметит существование процессов, приоста- новленных в ожидании очистки канала, и возобновит их выполнение подобно то- му, как это было объяснено выше. Исключением из этого утверждения является 107 ситуация, когда процесс записывает в канал данные, объем которых превышает емкость канала (то есть, объем данных, которые могут храниться в блоках пря- мой адресации); в этом случае ядро записывает в канал столько данных, сколь- ко он может вместить в себя, и приостанавливает процесс до тех пор, пока не освободится дополнительное место. Таким образом, возможно положение, при ко- тором записываемые данные не будут занимать непрерывное место в канале, если другие процессы ведут запись в канал в то время, на которое первый процесс прервал свою работу. Анализируя реализацию каналов, можно заметить, что интерфейс процессов согласуется с интерфейсом обычных файлов, но его воплощение отличается, так как ядро запоминает смещения для чтения и записи в индексе вместо того, что- бы делать это в таблице файлов. Ядро вынуждено хранить значения смещений для поименованных каналов в индексе для того, чтобы процессы могли совместно ис- пользовать эти значения: они не могли бы совместно использовать значения, хранящиеся в таблице файлов, так как процесс получает новую запись в таблице файлов по каждому вызову функции open. Тем не менее, совместное использова- ние смещений чтения и записи в индексе наблюдалось и до реализации поимено- ванных каналов. Процессы, обращающиеся к непоименованным каналам, разделяют доступ к каналу через общие точки входа в таблицу файлов, поэтому они могли бы по умолчанию хранить смещения записи и чтения в таблице файлов, как это принято для обычных файлов. Это не было сделано, так как процедуры низкого уровня, работающие в ядре, больше не имеют доступа к записям в таблице фай- лов: программа упростилась за счет того, что процессы совместно используют значения смещений, хранящиеся в индексе. .te1 5.12.4 Закрытие каналов При закрытии канала процесс выполняет ту же самую процедуру, что и при закрытии обычного файла, за исключением того, что ядро, прежде чем освобо- дить индекс канала, выполняет специальную обработку. Оно уменьшает количест- во процессов чтения из канала или записи в канал в зависимости от типа фай- лового дескриптора. Если значение счетчика числа записывающих в канал про- цессов становится равным 0 и имеются процессы, приостановленные в ожидании чтения данных из канала, ядро возобновляет выполнение последних и они завер- шают свои операции чтения без возврата каких-либо данных. Если становится равным 0 значение счетчика числа считывающих из канала процессов и имеются процессы, приостановленные в ожидании возможности записи данных в канал, яд- ро возобновляет выполнение последних и посылает им сигнал (глава 7) об ошиб- ке. В обоих случаях не имеет смысла продолжать держать процессы приостанов- ленными, если нет надежды на то, что состояние канала когда-нибудь изменит- ся. Например, если процесс ожидает возможности производить чтение из непои- менованного канала и в системе больше нет процессов, записывающих в этот ка- нал, значит, записывающий процесс никогда не появится. Несмотря на то, что если канал поименованный, в принципе возможно появление нового считывающего или записывающего процесса, ядро трактует эту ситуацию точно так же, как и для непоименованных каналов. Если к каналу не обращается ни один записываю- щий или считывающий процесс, ядро освобождает все информационные блоки кана- ла и переустанавливает индекс таким образом, чтобы он указывал на то, что канал пуст. Когда ядро освобождает индекс обычного канала, оно освобождает для переназначения и дисковую копию этого индекса. 5.12.5 Примеры Программа на Рисунке 5.18 иллюстрирует искусственное использование кана- лов. Процесс создает канал и входит в бесконечный цикл, записывая в канал 108 +---------------------------------+ | char string[] = "hello"; | | main() | | { | | char buf[1024]; | | char *cp1,*cp2; | | int fds[2]; | | | | cp1 = string; | | cp2 = buf; | | while(*cp1) | | *cp2++ = *cp1++; | | pipe(fds); | | for (;;) | | { | | write(fds[1],buf,6); | | read(fds[0],buf,6); | | } | | } | +---------------------------------+ Рисунок 5.18. Чтение из канала и запись в канал строку символов "hello" и считывая ее из канала. Ядру не нужно ни знать о том, что процесс, ведущий запись в канал, является и процессом, считывающим из канала, ни проявлять по этому поводу какое-либо беспокойство. Процесс, выполняющий программу, которая приведена на Рисунке 5.19, соз- дает поименованный канал с именем "fifo". Если этот процесс запущен с указа- нием второго (формального) аргумента, он пос- +------------------------------------------------------------+ | #include | | char string[] = "hello"; | | main(argc,argv) | | int argc; | | char *argv[]; | | { | | int fd; | | char buf[256]; | | | | /* создание поименованного канала с разрешением чтения и | | записи для всех пользователей */ | | mknod("fifo",010777,0); | | if(argc == 2) | | fd = open("fifo",O_WRONLY); | | else | | fd = open("fifo",O_RDONLY); | | for (;;) | | if(argc == 2) | | write(fd,string,6); | | else | | read(fd,buf,6); | | } | +------------------------------------------------------------+ Рисунок 5.19. Чтение и запись в поименованный канал 109 тоянно записывает в канал строку символов "hello"; будучи запущен без второ- го аргумента, он ведет чтение из поименованного канала. Два процесса запус- каются по одной и той же программе, тайно договорившись взаимодействовать между собой через поименованный канал "fifo", но им нет необходимости быть родственными процессами. Другие пользователи могут выполнять программу и участвовать в диалоге (или мешать ему). 5.13 DUР Системная функция dup копирует дескриптор файла в первое свободное место в таблице пользовательских дескрипторов файла, возвращая новый дескриптор пользователю. Она действует для всех типов файла. Синтаксис вызова функции: newfd = dup(fd); где fd - дескриптор файла, копируемый функцией, а newfd - новый дескриптор, ссылающийся на файл. Поскольку функция dup дублирует дескриптор файла, она увеличивает значение счетчика в соответствующей записи таблицы файлов - за- таблица пользова- тельских дескрип- торов файла таблица файлов таблица индексов +---------+ +------------+ +--------------+ 0| ----+----+ | | | - | +---------+ | | | | - | 1| ----+---++-->| | | - | +---------+ | +------------+ | - | 2| ----+--++--->| - | | - | +---------+ +---->| - | | - | 3| ----+----+ | - | | - | +---------+ | | - | +--------------+ 4| ----+---+| | - | +---->| счет- | +---------+ || | - | | | чик (/etc/ | 5| ----+--+|| +------------+ | +-->| 2 passwd)| +---------+ ||| | счет- | | | +--------------+ 6| ----++ ||+-->| чик +--+ | | - | +---------++-||--->| 2 | | | - | 7| | || +------------+ | | - | +---------+ || | - | | | - | | - | || +------------+ | | - | +---------+ || | счетчик | | | - | |+--->| 1 +----|+ | - | | +------------+ || | - | | | - | || +--------------+ | | - | || | счет- | | | - | |+->| чик (local)| | | - | | | 1 | | | - | | +--------------+ | +------------+ | | - | | | счетчик | | | - | +---->| 1 +----+ | - | +------------+ | - | | - | +--------------+ | - | +------------+ Рисунок 5.20. Структуры данных после выполнения функции dup 110 писи, на которую указывают связанные с ней точки входа в таблице файловых дескрипторов, которых теперь стало на одну больше. Например, обзор структур данных, изображенных на Рисунке 5.20, показывает, что процесс вызывает сле- дующую последовательность функций: он открывает (open) файл с именем "/etc/passwd" (файловый дескриптор 3), затем открывает файл с именем "local" (файловый дескриптор 4), снова файл с именем "/etc/passwd" (файловый деск- риптор 5) и, наконец, дублирует (dup) файловый дескриптор 3, возвращая деск- риптор 6. Возможно, dup - функция, не отличающаяся изяществом, поскольку она пред- полагает, что пользователь знает о том, что система возвратит свободную точ- ку входа в таблице пользовательских дескрипторов, имеющую наименьший номер. Однако, она служит важной задаче конструирования сложных программ из более простых конструкционных блоков, что, в частности, имеет место при создании конвейеров, составленных из командных процессоров. Рассмотрим программу, приведенную на Рисунке 5.21. В переменной i хра- нится дескриптор файла, возвращаемый в результате открытия файла "/etc/passwd", а в переменной j - дескриптор файла, возвращаемый системой в результате дублирования дескриптора i с помощью функции dup. В адресном пространстве процесса оба пользовательских дескриптора, представленные пере- менными i и j, ссылаются на одну и ту же запись в таблице файлов и поэтому используют одно и то же значение смещения внутри файла. Таким образом, пер- вые два вызова процессом функции read реализуют последовательное считывание данных, и в буферах buf1 и buf2 будут располагаться разные данные. Совсем другой результат получается, когда процесс +--------------------------------------------------------+ | #include | | main() | | { | | int i,j; | | char buf1[512],buf2[512]; | | | | i = open("/etc/passwd",O_RDONLY); | | j = dup(i); | | read(i,buf1,sizeof(buf1)); | | read(j,buf2,sizeof(buf2)); | | close(i); | | read(j,buf2,sizeof(buf2)); | | } | +--------------------------------------------------------+ Рисунок 5.21. Программа на языке Си, иллюстрирующая использо- вание функции dup открывает один и тот же файл дважды и читает дважды одни и те же данные (раздел 5.2). Процесс может освободить с помощью функции close любой из фай- ловых дескрипторов по своему желанию, и ввод-вывод получит нормальное про- должение по другому дескриптору, как показано на примере. В частности, про- цесс может "закрыть" дескриптор файла стандартного вывода (файловый дескрип- тор 1), снять с него копию, имеющую то же значение, и затем рассматривать новый файл в качестве файла стандартного вывода. В главе 7 будет представлен более реалистический пример использования функций pipe и dup при описании особенностей реализации командного процессора. 111 5.14 МОНТИРОВАНИЕ И ДЕМОНТИРОВАНИЕ ФАЙЛОВЫХ СИСТЕМ Физический диск состоит из нескольких логических разделов, на которые он разбит дисковым драйвером, причем каждому разделу соответствует файл устрой- ства, имеющий определенное имя. Процессы обращаются к данным раздела, откры- вая соответствующий файл устройства и затем ведя запись и чтение из этого "файла", представляя его себе в виде последовательности дисковых блоков. Это взаимодействие во всех деталях рассматривается в главе 10. Раздел диска мо- жет содержать логическую файловую систему, состоящую из блока начальной заг- рузки, суперблока, списка индексов и информационных блоков (см. главу 2). Системная функция mount (монтировать) связывает файловую систему из указан- ного раздела на диске с существующей иерархией файловых систем, а функция umount (демонтировать) выключает файловую систему из иерархии. Функция mount, таким образом, дает пользователям возможность обращаться к данным в дисковом разделе как к файловой системе, а не как к последовательности дис- ковых блоков. Синтаксис вызова функции mount: mount(special pathname,directory pathname,options); где special pathname - имя специального файла устройства, соответствующего дисковому разделу с монтируемой файловой системой, directory pathname - ка- талог в существующей иерархии, где будет монтироваться файловая система (другими словами, точка или место монтирования), а options указывает, следу- ет ли монтировать файловую систему "только для чтения" (при этом не будут выполняться + - - - - - - - - - - - - - - - - - - - - - - - - + / | | | +----------------+--+-------------+ Корневая | | | | | файловая bin etc usr система | | | - | +-----+-----+ +----+----+ - | | | | | | - | cc date sh getty passwd - + - - - - - - - - - - - - - - - - - - - - - - - - + - + - - - - - - - - - - - - - - - - - - - - - - - - + / | | | Файловая +----------------+--+-------------+ система из | | | | | раздела с bin include src именем | | | | | /dev/dsk1 +-----+-----+ | | | | | | | | | awk banner yacc stdio.h uts + - - - - - - - - - - - - - - - - - - - - - - - - + Рисунок 5.22. Дерево файловых систем до и после выполнения функции mount такие функции, как write и creat, которые производят запись в файловую сис- тему). Например, если процесс вызывает функцию mount следующим образом: mount("/dev/dsk1","/usr",0); ядро присоединяет файловую систему, находящуюся в дисковом разделе с именем "/dev/dsk1", к каталогу "/usr" в существующем дереве файловых систем (см. 112 Рисунок 5.22). Файл "/dev/dsk1" является блочным специальным файлом, т.е. он носит имя устройства блочного типа, обычно имя раздела на диске. Ядро пред- полагает, что раздел на диске с указанным именем содержит файловую систему с суперблоком, списком индексов и корневым индексом. После выполнения функции mount к корню смонтированной файловой системы можно обращаться по имени "/usr". Процессы могут обращаться к файлам в монтированной файловой системе и игнорировать тот факт, что система может отсоединяться. Только системная функция link контролирует файловую систему, так как в версии V не разрешают- ся связи между файлами, принадлежащими разным файловым системам (см. раздел 5.15). Ядро поддерживает таблицу монтирования с записями о каждой монтированной файловой системе. В каждой записи таблицы монтирования содержатся: * номер устройства, идентифицирующий монтированную файловую систему (упо- мянутый выше логический номер файловой системы); * указатель на буфер, где находится суперблок файловой системы; * указатель на корневой индекс монтированной файловой системы ("/" для файловой системы с именем "/dev/dsk1" на Рисунке 5.22); * указатель на индекс каталога, ставшего точкой монтирования (на Рисунке 5.22 это каталог "usr", принадлежащий корневой файловой системе). Связь индекса точки монтирования с корневым индексом монтированной фай- ловой системы, возникшая в результате выполнения системной функции mount, дает ядру возможность легко двигаться по иерархии файловых систем без полу- чения от