а - Александр Покрышкин. "Семен Алексеевич! - писал Покрышкин.- Прошу Вас поторопить завод с изготовлением, так как мне хотелось получить Ваши самолеты побыстрее, чтобы по работать в самое горячее время, а оно у нас уже началось... К тому же я бы хотел, чтобы изготовляемая для меня партия была с 83-мотором и с тремя пушками. О тех двух Ла-7, которые Вы мне обещали на заводе, я сейчас: веду переговоры..." *. После двадцатипятилетнего перерыва Лавочкин снова на военной службе. В конце 1944 года ему присвоено генеральское звание. В просторном кабинете наркома авиационной промышленности вместе с другими генералами Лавочкин в новенькой форме застыл по стойке смирно. Генерал-полковник инженерно-авиационной службы Алексей Иванович Шахурин принимал присягу. После завершения церемонии нарком пригласил генералов на ужин. "Тот вечер,- вспоминает А. В. Чесалов, присягавший вместе с Лавочкиным,- имел очень большое значение для развития нашей реактивной авиации в дальнейшем. Обмен мнениями наших ведущих авиаконструкторов и руководящих научных работников позволил установить единство взглядов по ряду принципиальных вопросов и, в частности, по линии развития нашего реактивного двигателестроения. Несмотря на то, что в то время для всех нас многое представлялось далеко не так, как оно потом произошло в жизни, этот вечер сыграл большую роль в дальнейших конструкторских работах Лавочкина. Я помню, как он во время ужина сказал: -- Товарищи мотористы, вы дайте нам реактивный двигатель, а самолеты с этими двигателями мы сделаем. За нами задержки не будет!". -- * Цитируется по книге П. Асташенкова "Полет в новое" (М.: Госполнтиздат, 1961.-С. 30). Глава пятая. ПЕРВЫЕ РЕАКТИВНЫЕ. Скорей - это наш закон. К нам, авиаконструкторам, никак не применима эта ходячая мудрость: "Лучше поздно, чем никогда". Для нас поздно хуже, чем никогда. Самолет, который опоздал, который вылетел в небо позже, чем ему положено, похож на бойца, явившегося сегодня на поле боя в облачении прошлых лет: оно устарело, оно неудобно, и главное - враги давно уже нашли его уязвимые места. С. А. Лавочкин Вторжение в неизвестность Радостное известие об окончании войны застало Лавочкина в Москве. Вместе с ближайшими помощниками в генеральском мундире он направился к Красной площади. Толпа подхватила Лавочкина и буквально пронесла через площадь. Но, вероятно, никто из этих людей и не подозревал, что поднимает на руки создателя одного из лучших истребителей мира. Этот день запомнился Лавочкину. "Я провел его на московских улицах. Ни дома, ни в конструкторском бюро не сиделось. Радовался вместе со всеми, смеялся, аплодировал фронтовикам. Но вот прошел праздник, и вдруг мы все почувствовали себя немного студентами, сдавшими последний самый трудный экзамен. И, как всегда бывает после экзамена, перед нами встал вопрос: что делать дальше?" Ответ на вопрос, что делать дальше, подсказала жизнь. Через КБ Лавочкина и других конструкторов по-прежнему проходил фронт. Генерал Лавочкин и его коллеги занялись новыми задачами, к решению которых вынуждала обстановка. Война приближалась к концу, когда группа высших американских офицеров, имевших большее отношение к шпионажу, чем к авиации, занялась подготовкой необычных операций. Пожалуй, уместнее всего назвать их инженерной разведкой, но разведкой боем с захватом людей и документов. Книга С. Гоудсмита "Операция Алсос" подробно рассказала, как американцы пытались овладеть секретами германской ядерной физики. Известна и другая опера- ция - "Пейпр Клипс". Группе смельчаков из отрядов коммандос была поставлена задача: захватывать немецкие архивы и ловить ученых, имевших хотя бы какое-то отношение к военной технике. - Если вам попадутся просто фашисты, не представляющие ценности для науки, не брать. Если же они могут иметь для нас определенный научный интерес, то их политическое прошлое не играет никакой роли! - напутствовал своих солдат руководитель операции. Началась невиданная в истории охота, увенчавшаяся отменными трофеями. По самым скромным подсчетам общее число конфискованных германских патентов, в том числе и патентов на изобретения в области реактивной истребительной авиации, составило около 350 тысяч. Из Германии вывозились построенные или почти построенные машины. Вывозились и средства исследования... "Немецкая труба сверхзвуковых скоростей, обнаруженная американцами в Баварии, перевезена в США и будет установлена в артиллерийской лаборатории морского ведомства...". "25 германских ракет А-4 (Фау-2) будут выпущены в воздух в пустыне Нью-Мексика под наблюдением специалистов ВВС США...". "Курт Танк, бывший главный конструктор фирмы "Фокке-Вульф", по-видимому, будет работать в Англии...". На рубеже войны и мира западная печать пестрила такого рода сообщениями. Заводы в Аусбурге, выпускавшие десятки тысяч истребителей, частично демонтированы, частично взорваны. Сам Мессершмитт, как и его коллега Дорнье, перебрался в Испанию. Хейнкель работает в Аргентине. Курт Танк пытается что-то сделать в Египте и в Индии. Битые гитлеровские авиаконструкторы кочуют по всему миру, торгуя знаниями, опытом, профессиональным мастерством, мечтая о восстановлении военного потенциала Западной Германии. "Преодолевая трудности,- писал западногерманский авиационный журнал "Флюгвельт",- удалось собрать превосходных специалистов и организовать выдающийся штаб конструкторов, который, несмотря на запрет и ограничения, все-таки как-то существовал и действовал. Это сообщество сотрудников, дополненное его прежними раотниками, которые ждали возможности снова работать в возрожденном акционерном обществе "Мессершмитт"... В то время как официально заводы Мессершмитта занимались строительством исключительно по лицензиям, конструкторское бюро занималось исключительно разведкой, проектированием самолетов и вопросами развития .конструкций...". В 1945 году на весь мир прозвучали недвусмысленные слова американского президента Трумена: "То, что мы причиняем Японии в настоящее время даже с новыми атомными бомбами, только небольшая часть того, что произошло бы с миром в третьей мировой войне". Это была почти угроза. Выход был один. Силе противопоставить силу. Советское правительство обратилось к ученым. Физикам поручили создать атомную бомбу. Авиаконструкторам - ракеты и реактивные самолеты. В авиацию больших скоростей, в грохочущий, наполненный опасностями и неожиданностями мир Лавочкин вошел зрелым мастером. Он совсем не похож на того долговязого молодого инженера, который в 1938 году с энтузиазмом вычерчивал вечерами контуры первого ЛаГГа. Энтузиазм не уменьшился, но о вечернем проектировании теперь вспоминали только с улыбкой. И хотя не прошло и десятка лет, конструктору казалось, что дни его творческой молодости и зрелости разделяет бездна. . Все стало иным. И машины, и масштабы их проектирования. Там, где до войны вполне управлялись десятки, работать сотни, а то и тысячи специалистов. Новые самолеты с обилием автоматики, электроники, оборудования и вооружения ставили иные инженерные задачи, порождали неожиданные научные проблемы. Пожалуй, как никогда за всю историю авиации конструктор стал оправдывать свои высокие звания - главный, генеральный. Теперь он не просиживал часами за чертежными досками, не рисовал схем самолета. Работа, полтора десятка лет назад лежавшая на плечах главного, перешла к заместителям, помощникам, руководителям групп. Оторвавшись от чертежной доски, генеральный конструктор стал Скорее организатором, но организатором нового типа - обладающим большой инженерной эрудицией, высокой технической культурой. Доверив помощникам исполнение, отдав им решение задач инженерной тактики, главный углубился в стратегию своей профессии. Теперь, когда авиация находилась на переломе, особенно понадобилось умение проникнуть далеко в будущее, точно сформулировать задачу, определить программу работы. Главного конструктора иногда сравнивают с дирижером. Сравнение во многом справедливо. Он и впрямь дирижирует, соединяя в единую творческую симфонию труд множества людей разных инженерных профессий. Однако это сравнение неточно. Конструктор скорее композитор, дирижирующий оркестром, который исполняет его собственную музыку. Создавая боевой истребитель, главный конструктор в предвоенные годы был очень ограничен в композиционных возможностях. Самолет, мотор, оружие - таковы компоненты творчества. Все стало иным после войны, когда самолет буквально нафаршировали сложнейшим оборудованием и вооружением, насытили автоматикой и телемеханикой. Теперь от конструктора требовалось неизмеримо больше. Слишком много составляющих появилось в композиции. Слишком много факторов стало влиять на выбор главного направления. И все же Семен Алексеевич с его умением угадывать перспективы, изыскивать основное, решающее чувствовал себя в этой сложной обстановке отлично. - Я не знаю, как это сделать, но я знаю, что это нужно сделать так, чтобы получилось хорошо! Эту фразу Лавочкина хорошо помнили и любили его помощники. Отыскав в будущей машине главное, Семен Алексеевич повторял эти слова слишком часто для того, чтобы их забыть. Любили же это высказывание за то, что каждому открывалась полная свобода действий. От помощников требовалось лишь одно - сделать хорошо и представить Семену Алексеевичу законченное изделие. Лавочкин прекрасно знал физику, в каждом конкретном случае четко представлял суть дела, но никогда не навязывал своим сотрудникам пришедшие ему в голову частные решения. Он верил в их взыскательность к своему труду. Ему важнее было другое - отделить перспективное от неперспективного. "Работая в области новой авиационной техники,- писал он на страницах "Литературной газеты",- невольно задумываешься и над вопросами технического прогресса вообще. Мне кажется, что в наше время одним из главнейших условий этого прогресса являются поиски радикальных технических решений. Возьмем хотя бы самый простой пример. который у каждого из нас перед глазами,- обычную бытовую машину: неуклюжая цилиндрическая щет-ка подвешена под кузовом автомобиля. Идея машины, разумеется, не нова,- поражает другое: с каким упорством конструкторы совершенствуют эту щетку, перенося ее с грузовика одной марки на другой, придавая новому грузовику обтекаемую форму, улучшая передачу к щетке и т. д. и т. п. А может быть, разумнее было бы не совершенствовать метлу для подметания мостовых, а заменить ее машиной, работающей на другом принципе, скажем, на принципе воздушного насоса?" Я не случайно процитировал это высказывание, характеризующее образ мышления Лавочкина, путь, который он избрал для себя,- не изобретать изобретенное, а находить принципиально иные решения. Мне хотелось также, чтобы читатель ощутил не только стиль изложения, но и стиль работы Семена Алексеевича. Он всегда давал высказаться всем. Внимательно слушал, мгновенно аккумулировал наиболее интересное. Он никогда не говорил: "я утверждаю", "я приказываю". Он пользовался совсем другими оборотами: "вот мы и придай к выводу...", "общими усилиями можно дать такое решение...". Подводя итог тех или иных совещаний, Семен Алексеевич сам делал нужные выводы, но подавал их сотрудникам как результат совместного, коллективного творчества. Это импонировало людям, стимулировало мышление, поиски нового. За это его очень уважали. С удивительной четкостью представлял себе Семен Алексеевич, как будут военные использовать его самолет. В тактике боя он разбирался превосходно. В послевоенные годы освоение новой скоростной техники напоминало взрыв. Ученые и инженеры открыли военным столько возможностей, что у тех буквально "глаза разбежались". Техника творила подлинные чудеса, и не так-то просто решить, что же взять за основу, куда направить энергию, чтобы получить машину нового типа. В этой сложной ситуации Лавочкин приветливо протянул руку военным. Семен Алексеевич практически осуществил мысль, высказанную им незадолго до этого корреспонденту "Известий" Борису Агапову: только зная свою машину как воин, как пилот, конструктор может усовершенствовать ее как инженер. Да, многое решали сообща. Одного летчика сажать либо двух? Нужна ли система наведения? Что лучше при больших скоростях - пушки или ракеты? Будем ли ставить оружие, стреляющее назад, а если будем, то автоматическое или не автоматическое? Каждая послевоенная машина преподносила десятки и сотни таких вопросов. Решать их следовало в теснейшем контакте с военными, с людьми, которые во всеоружии фронтового опыта могли по-настоящему оценить новую боевую технику, созданную Лавочкиным и его коллегами. То, что Лавочкин оказался среди людей, формирующих новую тактику воздушного боя, не только не случайно, но, напротив, закономерно. Новейшая история техники знает и более глубокие вмешательства инженеров. Вот, к примеру, работы С. П. Королева. Успехи, одержанные им в области космических ракет, буквально выбили почву из-под ног у творцов агрессивных военных доктрин. Осторожно, но настойчиво, а главное с железной последовательностью переходил Лавочкин барьер неизвестности, отделявший винтомоторную авиацию от реактивной. Я уже рассказывал, как в 1944 году он построил Ла-7Р с дополнительным жидкостно-реактивным двигателем В. П. Глушко, на котором совершал свои отважные полеты Г. М. Шиянов. В 1946-м, когда реактивная авиация стала необходимостью, Семен Алексеевич продолжил эту работу. Он решил как следует разобраться в капризах и неожиданностях, на которые оказался так щедр ракетный двигатель. Лавочкин модернизирует Ла-7Р (новый вариант называется Ла-120Р) и поручает серию исследовательских полетов А. В. Давыдову, опытному летчику, уже встречавшемуся с реактивной техникой. Еще перед войной Давыдов испытывал поликарповские истребители с прямоточными ускорителями. Инженеры-испытатели Р. А. Арефьев и М. Л. Барановский хорошо запомнили тот день, когда Давыдов выполнил задание и достиг максимальной скорости. "Давыдов подрулил. Все к нему: - Как скорость? - Ох, братцы, даже страшно сказать... Мы к приборам-самописцам. Скорость действительно сейчас же звони в наркомат. Но когда сняли кожух с двигателя - он рассыпался. Двигатель работал на повышенном режиме, позволил самолету развить солидную скорость, но режима не вынес. Словно сказал: - Я так больше не хочу! После этого полета Валентин Петрович Глушко прижил радикальные меры, существенно увеличив надежность двигателя". Оценив возможности ЖРД, Семен Алексеевич решил проверить, как выглядит этот двигатель по сравнению со своими собратьями. "В 1946 году, через три года после нашего первого знакомства,- вспоминал Бондарюк,- отработав прямоточный воздушно-реактивный двигатель, мы снова предложили Семену Алексеевичу установить его на самолет. Снова встретили мы в нем человека, жаждавшего дать авиационной технике нечто новое. Он представил нам широкие возможности для экспериментов, и мы не обманули его ожиданий...". Вы, вероятно, помните, как в 1943 году Бондарюк привозил свой прямоточный воздушно-реактивный двигатель Лавочкину. Запущенный перед ангаром на летном поле заводского аэродрома струей от воздушного винта ЛаГГ-3, этот двигатель чуть не наделал беды. Завихренный, турбулентный поток породил огромный факел. Три года спустя, когда появились отличные испытательные стенды, прямоточный двигатель, доведенный и отработанный, показал себя превосходнейшим образом. На стенде он работал безупречно. Но... к великому удивлению испытателей, в воздухе зажечься не пожелал. Причина, как вскоре выяснили, таилась во внутренней аэродинамике двигателя. Когда велись наземные стендовые испытания, вентилятор гнал турбулентный воздушный поток. Этот поток смешивался с топливом, образуя необходимую для горения рабочую смесь. Во время полета в канале двигателя тоже возникал поток. Но он оказался неправдоподобно идеальным. Струи его текли столь плавно, что воздух не смешивался с топливом. Бондарюк оборудовал двигатель искусственным возбудителем турбулентности, и ускоритель заработал на славу. Скорость полета увеличилась на 110 километров в час. Испытав ЖРД Глушко и "прямоточку" Бондарюка, Лавочкин обратился затем к пульсирующему воздушно-реактивному двигателю, созданному В. Н. Челомеем. "Это были удивительно громкие двигатели,- вспоминал В. А. Кривякин.- Я в жизни не слыхал такого адского шума. Когда при подготовке к параду машины е пульсирующим ВРД прошли над территорией завода, казалось, что начинается светопреставление..." Двигатель Челомея, подобный тем, что немцы ставили на самолеты-снаряды Фау-1, оказался не только самым громким. Он дал приращение скорости 127 километров в час - большее, чем ЖРД и "прямоточка". Казалось бы, чего лучше? Однако Лавочкин и от него отказался (что, кстати, многие сочли неожиданным). Несмотря на видимую эффективность, этот двигатель годился лишь для дозвуковых скоростей полета, а Семен Алексеевич смотрел гораздо дальше... Итак, все три типа двигателей Лавочкин забраковал. ЖРД мог развить колоссальную скорость, но был слишком прожорлив, а потому работал недолго. Лавочкин "уступил" его ракетчикам. Чтобы запустить самолет с "летающей трубой" ("прямоточка"), нужен был либо самолет-носитель, либо специальные стартовые двигатели. Наконец, пульсирующие двигатели годились лишь для дозвуковых скоростей. Оставался еще один тип двигателя - турбореактивный, или, как его еще иначе называют, газотурбинный. Но хотя идея такого двигателя не нова, в ту пору ни одна страна мира еще не располагала техническими возможностями воплотить эту идею в конкретные конструктивные формы. Разрабатывать газотурбинный двигатель начали в тридцатых годах в Англии, Америке, Германии и у нас. Трудностей на долю инженеров всех этих стран выцало предостаточно... Любопытен, больше того, по-своему примечателен и тернистый путь, пройденный известным английским изобретателем Франком Уиттлом. Проект газовой турбины, который он в 1928 году предложил промышленникам, сулил самолету скорость по тем временам фантастически огромную - около 800 километров в час. Однако одна за другой несколько фирм отвергли предложение Уиттла, не желая подвергать себя малейшему финансовому риску. Главный конструктор "Бритиш Томпсон Хаустон турбин фактори" (БИТ) Самуэльсон весьма откровенно объяснил Уиттлу, что реализация его замысла обойдется не менее 60 000 фунтов стерлингов, а тратить и такую сумму без уверенности в успех он просто не вправе. Мытарства изобретателя продолжались шесть лет. Уже истек срок патента. Уиттл не имел даже пяти фунтов стерлингов, без уплаты которых нельзя было этот срок продлить. Наконец, при содействии министерства авиации удалось прийти к соглашению. По этому соглашению Уиттл уступал авторские права вновь организованной фирме "Поуэр джетс лимитед", за что фирма предоставляла ему на пять лет должность почетного главного инженера и технического советника. Поисковые работы над авиационными турбинами в СССР начались в начале тридцатых годов и велись совершенно самостоятельно, независимо от зарубежной конструкторской мысли. Да иначе и быть не могло: во всех странах создание газотурбинного двигателя велось в условиях полной секретности. В начале тридцатых годов конструкторы Москвы, Ленинграда, Харькова получили задание спроектировать мощные авиационные турбины. Они понадобились для больших самолетов Туполева. Выполняя это задание, конструкторы пошли путем, казавшимся тогда многим наиболее обещающим, путем создания паровой турбины. "Паровой двигатель в авиации", "Самолет под парами" - с такими названиями выходили книги, печатались статьи. Пять лет ушло на разработку авиационной паротурбинной установки ПТ-1, но... по мере роста скоростей самолетов росли и мощности охладителей, конденсировавших отработанный пар. Все преимущества паротурбинных двигателей сводились на нет. Вместе с конструктором В. М. Петляковым, профессорами Л. К. Рамзиным и М. В. Кирпичевым, Семен Алексеевич Лавочкин входил в Государственную комиссию, которая в 1937 году после стендовых испытаний паротурбинной установки ПТ-1 вынесла, по существу, авиационной паровой турбине смертный приговор. В том же 1937 году (почти одновременно с началом практических работ Франка Уиттла) Архип Михайлович Люлька предложил вполне современные схемы одноконтурного и двухконтурного турбореактивных двигателей. Свое предложение он оформил в виде заявки на изобретение. Заявка Люльки породила ожесточенные научно-технические споры, продолжавшиеся около двух лет. В 1939 году, преодолев сомнения скептиков, Люлька приступил к практической разработке своих идей. Профессор Н. М. Синев писал в 1968 году на страницах журнала "Техника - молодежи": "Схема газотурбинного реактивного двигателя, предложенная инженером А. Люлькой, долгое время работавшего с нами над паросиловыми установками, оказалась естественным и успешным завершением поиска, начатого еще в начале тридцатых годов". В СССР работал Архип Михайлович Люлька, в Англии, в фирме "Пауэр джетс лимитед" - Франк Уиттл. В октябре 1936 года построенный этой фирмой первый экземпляр его двигателя поступил на испытания. Они не принесли желанного результата. Неприятности обжигающе ледяным душем обрушились на Франка Уиттла. Топливо сгорало неравномерно, не раз заставляя ученых и инженеров спасаться бегством из помещения, где стоял испытательный стенд. Адский шум, сопутствовавший испытаниям, породил легенду о том, что здесь испытываются какие-то новые огнеметы. В марте 1937 года разрушился кожух турбины. В апреле, при попытке Уиттла увеличить число оборотов, турбина страшно завыла и ее едва удалось остановить, избежав взрыва. В 1938 году который можно было бы поставить для работы на самолете. Именно тогда, когда настал час пожинать первые плоды большой предварительной работы, на первый план вышла могущественная корпорация Роллс-Ройс, взявшая на себя изготовление для фирмы "Пауэр джетс лимитед" лопаток турбин, насосов, кожухов и прочих частей двигателя. Одним словом, по существу, проглотив фирму "Пауэр джетс лимитед", корпорация Роллс-Ройс стала обладателем всего того, что удалось сделать Уиттлу и его партнерам. Ну а немцы? Подобно советским конструкторам, немцы начали с паротурбинных двигателей, а затем, обнаружив их бесперспективность, перешли к газовым турбинам. У Хейнкеля эти работы повел доктор Огайн, у Юнкерса под руководством профессора Вагнера - инженер Мюл- лер. Позднее к ним примкнули создатель ЮМО-004 доктор Франк и инженер Энке, разработавший аэродинамическую схему турбокомпрессора. В апреле 1941 года английский самолет "Глостер-40" с двигателями Франка Уиттла появился на испытательном аэродроме. Поначалу все выглядело удручающе скверным. Когда пилот Филипп Джерри Зайер пустил турбину и распорядился убрать колодки, самолет покатился, развив максимальную скорость... 32 километра в час. Ее не хватило даже для того, чтобы поднять машину в воздух. Но уже месяц спустя самолет оторвался от земли и пролетел 200 метров. Через год скорость достигла 480 километров в час, еще через год, в 1943 году, она выросла до 745 километров. Самолет "Метеор", показавший эту незаурядную скорость, взлетел в марте 1943 года. Это был истребитель с двумя турбореактивными двигателями. Успел этот истребитель сделать немного, действуя главным образом против немецких самолетов-снарядов Фау-1. О "Метеоре" мир заговорил уже после войны, после того, как англичанам удалось отработать эту машину. 7 ноября 1945 года специально подготовленный и усовершенствованный вариант самолета "Глостер Метеор IV" поставил мировой рекорд скорости - 976 километров в час. Этот мировой рекорд, естественно, стал большим событием в развитии авиации. И хотя трудности у Франка Уиттла были еще огромны, фирма Роллс-Ройс, мобилизовав все свои возможности, построила двигатели "Нин" и "Дервент", пожалуй, лучшие реактивные двигатели первых послевоенных лет, о которых еще пойдет речь впереди. Королевским указом Франк Уиттл был возведен в рыцарское достоинство. Но вернемся к советским двигателестроителям, к Люльке и его коллегам. Два года проработал Архип Михайлович на Кировском заводе в Ленинграде. Построил и испытал на стенде опытный образец своего двигателя. Потом началась война. Необходимость решать насущные нужды фронта перекинула Люльку в Челябинск для работы над двигателями для танков. Сообщения о том, что в Англии, Германии и Америке идут работы над турбореактивными двигателями, поступавшие к руководителям советской авиационной промышленности, несмотря на всю скудость такого рода информации, позволяли сделать единственный вывод: медлить нельзя. Конструктор Архип Михайлович Люлька снова возвращается в авиационную промышленность. Работа над истребителем БИ, о которой я уже рассказывал, сплотила вокруг коллектива В. Ф. Болховитинова разных людей, занимающихся реактивными двигателями. На бывший чугунолитейный завод прибыл и Люлька. В конце 1942 года Болховитинов откомандировал его в Ленинград за материалами, оставшимися на Кировском заводе. Под обстрелом гитлеровской артиллерии конструктор и его помощники тщательно собрали свое хозяйство, чертежи, готовые детали и узлы. Несколько автомашин материалов было переправлено через Ладогу. Снова полным ходом закипела работа... Несмотря на то, что войну мы встретили не так, как думали, победа наша подготовлена в предвоенные годы. Это в равной мере относится и к авиации. Появление самолетов, завоевавших господство в воздухе, невозможно представить без научных и конструкторских поисков предвоенных лет, а резкий рывок авиации после войны - без того багажа, который накопился в годы войны. Это бесспорно. Но бесспорно также то, что багаж этот накапливался в невероятно трудных условиях. Нелегко было вести экспериментальные работы дальнего прицела, когда промышленность знала один-единственный лозунг: "Все для фронта, все для победы!". Этому лозунгу действительно подчинялось все. Я уже рассказал историю нашего ракетного первенца - самолета БИ. В начале войны, когда стоял вопрос о жизни и смерти Советского государства, работа над этой машиной была почти единственной в области реактивной техники. Но перелом в войне оказался и переломом для реактивной техники. В научно-исследовательских учреждениях турбореактивный двигатель получил права гражданства. Усилилась работа над жаростойкими сплавами. Без этого о создании турбореактивных двигателей и думать не приходилось. И все же единственным двигателем, который удалось построить, не дожидаясь завершения серьезной научной разработки, оказался мотокомпрессорный двигатель, созданный совместными усилиями Центрального научно-исследовательского института авиационного моторостроения, конструкторским бюро А. И. Микояна и конструкторским бюро В. Я. Климова. Странный был это двигатель. Своего рода гибрид поршневого и реактивного. На самолет ставился обычный поршневой мотор. Часть мощности он отдавал воздушному винту, а часть - на удлиненный вал. Вал проходил через нагнетатель в хвостовую часть фюзеляжа и вращал компрессор. Поджатый скоростным напором и компрессором воздух попадал в камеру сгорания, тоже расположенную в хвостовой части. В камеру впрыскивался бензин, и смесь поджигалась. Да, двигатель выглядел странно. Но дело свое он сделал. К концу 1944 года его поставили на самолет Микояна и Гуревича. В начале 1945 года самолет И-250 начал полеты и достиг скорости 825 километров в час. Таким образом, Микоян и Гуревич перед началом более серьезной работы сумели, если так можно сказать, провести генеральную репетицию, значительно облегчившую им все последующее. Такой же самолет с мотокомпрессорным двигателем построил и Павел Осипович Сухой. Эти первые работы военных лет проводились не столь интенсивно, как в Германии, Англии, Америке, но зачеркивать их нельзя. Исследования в области скоростной аэродинамики, по аэродинамической компоновке скоростных самолетов, сконцентрированные воедино, позволили собирать солидный научный задел. - Чем больше я занимался этим периодом, тем больше удивлялся, как все-таки много удалось сделать в период войны. Никакие реактивные самолеты в 1945 году не появились бы, если бы не было этих работ,- сказал мне один из самых больших знатоков истории советской истребительной авиации А. В. Минаев. И все-таки кое в чем мы отстали. "В 1945 году мы начали испытывать опытный образец нашего первого двигателя,- рассказывал А. М. Люлька.- И, о ужас, из Германии привозят ЮМО-004. Когда мы посмотрели, оказалось, что это практически то же самое, что и у нас. Но там "это" летало на самолете, а у нас только на стенде...". Познакомившись с немецкими двигателями, Люлька увидел еще одно подтверждение правильности собственных решений. Сходство двигателей, спроектированных и построенных по разные стороны фронта, неправдоподобно большое. У немцев почти такая же степень сжатия, то же количество ступеней и турбина такая же, и тяга, примерно равная тяге первенца Люльки. В своих воспоминаниях Яковлев пишет: "Я выступил против копирования немецких самолетов, так как считал их конструкции сырыми и во многом неудачными. В тот момент у немцев были реактивные двигатели удачнее наших, а вот самолеты не получались". Сравнительная оценка двигателей, которую дал Яковлев, справедлива потому, что, обладая ЖРД, пульсирующими воздушно-реактивными двигателями и прямоточными, мы не имели турбореактивных, отработанных так, чтобы их можно было поставить на самолет. Нехожеными путями В первых разработках, которые вели все три истребительный КБ, пришлось довольствоваться трофейными двигателями. В ход пошли ЮМО-004 и БМВ-003. "Несколько экземпляров маломощных ЮМО, которыми мы располагали,- вспоминал заместитель Лавочкина Н. С. Черняков,- рассматривались как большая ценность. Экспериментировать широко и с размахом было трудно. И тогда, вопреки установившимся традициям, Семен Алексеевич всерьез занялся двигателями у себя в КБ". Это принесло дополнительные трудности. Естественно, что Лавочкин не смог предоставить своим новым сотрудникам условий, к которым они привыкли на моторных заводах. Работали в маленькой мастерской. Гоняли двигатели на доморощенных стендах. И все же, несмотря на кустарщину, добились многого. К Лавочкину пришли энтузиасты, люди, влюбленные в свое дело. Один из этих энтузиастов - Владимир Иосифович Нижний. Он принес на фирму множество идей, в том числе и мысль о двигателе с дожиганием топлива. Судьба Нижнего сложилась трагически. Через несколько лет после работы у Лавочкина он перешел в другое конструкторское бюро и погиб при взрыве двигателя во время испытаний, которыми он руководил. Нижнему было всего тридцать три года. Он погиб как солдат, в 1951 году, хотя война к тому времени уже давно окончилась. Это был удивительно целеустремленный человек и многообещающий конструктор. Он жил в мире технических идей с детства. По словам Л. И. Нижнего, младшего брата конструктора, комната Владимира Иосифовича всегда была вся в проводах. Аккумуляторы, паяльники, коробки с радиодеталями, книги, множество схем, обрезки жести, изоляторы, радиолампы, катушки, обмотки моторов и про-; стая железная кровать, от которой часто било током. Первое авторское свидетельство он получил, кажется, в тринадцать лет. Много друзей. Почти все фанатики. Жаркие споры с друзьями, накал которых гасится чересчур поздним для дома часом. А когда товарищи расходятся, брат работает досветла. Затем очень короткий сон и опять работа... Карманы пальто и костюма набиты книгами, журналами, брошюрами, записными книжками. Художественную литературу читает только в трамвае да за едой... Лавочкин, сам преданный любимому делу - технике, относился к Нижнему с большой теплотой и очень ценил его. Предложение Нижнего Семен Алексеевич воспринял с большим интересом. Он сразу же понял его перспективность и оказал разработке этого замысла всемерную поддержку. Суть предложения заключалась в том, что в форсажную камеру двигателя, расположенную за газовой турбиной, вспрыскивалось дополнительное топливо. Горение происходило за счет кислорода, не использованного турбиной. Иными словами говоря, турбореактивный двигатель с дожиганием представлял собой как бы комбинацию двух двигателей - турбореактивного и прямоточного, сжигавшего топливо в струе газов, прошедших через турбину. Дальнейшее развитие реактивных двигателей подтвердило правильность и плодотворность этой идеи. Именно форсажная камера помогла реактивным самолетам преодолеть звуковой барьер. "Опыты продолжались около двух лет,- вспоминал А. И. Валединский.- Мы взяли трофейный БМВ и путем дожигания дополнительного топлива подняли его тягу на 300 килограммов. Все испытания провели на базе у Лавочкина. Там же были изготовлены все нужные детали". Переход к реактивному двигателю для авиации - техническая революция неслыханного масштаба. Проблемы, которые, казалось бы, уже решены, теперь встали заново, в новом обличье. Понадобились новые аэродинамические схемы и расчеты, по-иному пришлось решать проблемы флаттера, устойчивости, компоновки, прочности... И, конечно, настало время полностью отказаться от такого конструкционного материала, как дерево... Увеличились перегрузки, иной характер приобрели маневры самолета в воздухе. Иными стали и условия полета. Повышение потолка познакомило конструкторов с турбулентными потоками. Оказалось, что в высоких слоях атмосферы существуют турбулентные зоны - своеобразные воздушные реки, невидимые, но очень бурные. Турбулентные потоки несли серьезную опасность. Порожденная ими циклическая болтанка, раскачивая крылья и оперение, вызывала опасные усталостные напряжения. В отдельных, менее прочных зернах металла возникали небольшие сдвиги. За ними следовали микроскопические трещины, и в конце концов ослабленный металл разрушался. И таких проблем, которых раньше не знал конструктор, стало так много, что для их решения понадобились научно-исследовательские институты, напряжение сил всей авиапромышленности... У трех конструкторских коллективов - Лавочкина, Яковлева и Микояна с Гуревичем одна и та же задача - построить реактивный истребитель, во пути к общей цели не схожи. Каждая из дорог отражает и характер своего главного, и положение дел в КБ. "Мы задались целью,- вспоминает А. С. Яковлев,- создать самолет, у которого новым был бы только двигатель, все же остальное по возможности оставить таким, как у поршневого самолета. Тогда летчик, садясь в кабину, попадал бы в хорошо знакомую привычную обстановку, а при взлете, посадке и в полете не чувствовал бы разницы между поршневым и реактивным самолетом. Нам удалось полностью осуществить свою идею и, как показало дальнейшее, мы не ошиблись, установив реактивный двигатель на хорошо известный истребитель Як-3. Конечно, для этого пришлось коренным образом переделать носовую часть самолета, но зато все остальное - кабина, крыло, оперение, шасси - не подвергалось существенным изменениям". Приспособив поршневой самолет к реактивному двигателю, Яковлев пошел на известные ограничения по скорости и флаттеру. Но тем не менее самолет сыграл свою положительную роль. Такую машину легче было запустить в серию. Удобной оказалась она и для переучивания летчиков, переходящих из поршневой авиации в реактивную. Новый "Як" вполне оправдывал свое название учебно-тренировочного истребителя. У Микояна и Гуревича позиция совсем иная. У них ; руки не отягощены серией. Вся "фирма", весь коллектив (сильный коллектив) бьет в одну цель. Имя этой цели - Миг-9. В каждый агрегат, в каждый узел конструкторы вносят что-либо новое. Поднялось горизонтальное оперение. Стало тоньше крыло. Третье колесо шасси из хвоста переместилось в нос. МиГ-9 - явный эксперимент. Эксперимент и в большом и в малом, не прекращавшийся ни на минуту до запуска машины в серию. Государственные испытания МиГа уже подходили к концу, когда произошел случай, наделавший хлопот всему КБ. Несколько дней висели над полигоном и аэродромом облака, и едва в них объявился просвет, как летчик-испытатель Андрей Григорьевич Кочетков вылетел, чтобы проверить оружие самолета на его практическом потолке. Кочетков набрал высоту, пролетел шестьдесят километров, отделявшие полигон от аэродрома, и... едва прозвучали первые выстрелы, как оба двигателя самолета остановились. Кочетков спас машину, взяв курс по солнцу на аэродром, закрытый облачностью. Он привел к нему истребитель с неработающими двигателями, пробил облачность и точнехонько совершил посадку. Такие полеты случаются не часто. Кочетков полетел отстреливать пушки, а привез проблему, да какую!.. В чем же суть проблемы, заявившей о себе в этом испытательном полете? При проектировании МиГ-9 пришлось очень трудно оружейникам. Тонкие крылья, которые были нынуждены поставить на машину конструкторы, типичные крылья для новых самолетов, не оставляли места ни для пушек, ни для патронных ящиков. Немногое __________________________________________________________________________________ МиГ-9 - первый советский реактивный истребитель А. И. Микояна и М. И. Гуревича ___________________________________________________________________________________ мог дать оружейникам и фюзеляж - конструкторы ухитрились запрятать туда два двигателя. Но кому нужен истребитель без пушек? И пушку воткнули близ двигателей. Мучились долго, а в результате неприятность - первые же выстрелы на .высоте заглушили двигатели. Сначала инженерам и ученым показалось, что на большой высоте, где атмосфера бедна кислородом, двигатель задушили пороховые газы, "едучие и антикислородные", как выразился один из моих собеседников. Но причина остановки двигателя была похитрее. Выяснилось, что горячие струи газов создавали тепловую неравномерность, а это, в свою очередь, приводило к неравномерности аэродинамической. Часть лопаток компрессора начинала работать на больших углах атаки. Возникал срыв потока. На лопатки компрессора обрушивались большие пульса-ционные нагрузки, напоминавшие частые удары молотка (это явление называют помпаж). Двигатель останавливался. Я не случайно рассказал эту историю, хотя она не имеет непосредственного отношения к самолету Лавочкина. Работа тех дней - особая работа. Вернее назвать ее коллективным подвигом. К освоению новейшей техники точно подходила древняя притча о прутьях, которые нельзя сломать, если они связаны в пучок. Опыт одного подсказывал решение другим. Слишком сложны были проблемы, возникшие перед конструкторами после войны, чтобы решать их в одиночку. "Мы хотим создать такой самолет,- писал Лавочкин в августе 1945 года,- который двигался бы со скоростью, приближающейся к скорости звука, равной ей и превышающей ее. До войны я мог бы написать на эту тему только полуфантастическую статью. Сейчас такой самолет для нас реальность. К нему привел нас опыт войны. Опыт войны - это не только военный опыт. Я не думаю сейчас о том, можно ли поставить на самолет пушку, где установить ее, как. Надо будет - поставим. Не это занимает нас сейчас, не над этим ломаем мы себе головы,- нас интересуют гораздо более широкие вопросы. До сих пор мы считали, что очень хорошо знаем законы аэродинамики. Так, мы делали самолеты с обтекаемыми формами потому, что нам был известен закон о сопротивлении воздуха. Но, стоило нам приблизиться к скорости звука, как оказалось, что законы аэродинамики стали с ног на голову; воздух начал скручивать металл там, где он раньше его обтекал. Он сгущался до плотности водяной струи там, где прежде не оказывал сопротивления. Нам нужно открыть и расшифровать эти новые законы. Мы ведь не можем работать на случайностях. Случайная удача для нас еще не удача. Мы должны оседлать новые скорости, быть хозяевами положения, а не рабами случая". Чтобы овладеть положением, у Лавочкина была лишь одна возможность - широкое научное исследование, а оно, как легко догадаться, не сулило немедленной отдачи. Да, Лавочкин отстал. Он подошел к созданию реактивного истребителя как к решению новой и весьма сложной научной задачи, а исследование в данном случае было лишь средством. Оно затянулось, и другие конструкторы опередили Семена Алексеевича. Первым взлетел МиГ-9. В тот же день, через несколько часов, Як-15. И лишь спустя несколько месяцев лавочкинский "150". МиГ стал солдатом и отцом солдат, родоначальником одной из самых знаменитых династий истребителей, Як-15 решил гораздо более частную, хотя и практически важную задачу - помог стереть рубежи между винтомоторной и реактивной авиацией. Ла-150... Впрочем, не будем опережать события и рассказывать о том, что произошло с Ла-150. Его успехи пришли потом, после неудачи, которую Семен Алексеевич воспринял мужественно и честно. Поступившись личным, он сделал все от него зависящее, чтобы успех его товарищей по труду вырос в победу всей советской авиации. __________________________________________________________________________________ Ла-11 - последний истребитель С. А. Лавочкина с поршневым двигателем __________________________________________________________________________________ Спор, продемонстрировавший умение Лавочкина подчинить личное государственному, возник вскоре после того, как Семен Алексеевич выпустил свой последний винтомоторный истребитель Ла-11. Это была отличная машина. Родившийся почти одновременно с Ла-150, Ла-11 обладал повышенной дальностью, мог держаться в воздухе без посадки около четырех часов. В другое время Лавочкин гордился бы таким самолетом. Характеристики Ла-11 великолепны. Но.... новорожденный самолет - машина вчерашнего дня. И отработанному до мелочей Ла-11 пришлось потесниться, уступая место еще не до конца оперившимся, но уже многообещающим реактивным истребителям. Однажды (об этом рассказал мне со слов Семена Алексеевича М. Л. Миль) Лавочкина пригласил Сталин. Сталину были представлены два самолета - законченный в начале 1947 года Ла-11 и одновременно получивший права гражданства МиГ-9. Оба самолета прошли государственные испытания. Естественно, что возник вопрос, какой же из них запускать в серию? Об этом и спросил Лавочкина Сталин. - Полагаю, что МиГ-9. - Нехорошо, что конструктор не заботится о своей машине! - назидательно сказал Сталин.- Ла-11 это самолет, в котором устранены дефекты, есть летчик, который может его пилотировать, механик, который может за ним ухаживать. А что такое МиГ? Груда металла... Подсказка была откровенной. И все же Лавочкин не изменил своего мнения. Слов нет, рядом с реактивным первенцем Микояна и Гуревича Ла-11 - мудрый старик, вобравший опыт фронтовых лет и умевший многое. Для запуска в крупносерийное производство Ла-11 требовал гораздо меньше времени. Тем не менее Лавочкин без колебаний уступил первенство юному, но очень обещающему МиГу. Глава шестая. ПО ТУ СТОРОНУ ЗВУКА Не вникая в технические тонкости этого явлен скажу, что мы оказались перед стеной, возведение! из загадок. Аэродинамические законы, известные нам, теряли на звуковом барьере свою силу, больш| того, многое приобретало обратный смысл. Техника требовала научного объяснения новых явлений. Да, наука стала очень нужна нам, инженерам. С. А. Лавочкин Конструкторы и наука Пятилетие, начавшееся в 1946 году в авиации, без преувеличения можно назвать пятилетием загадок. Случилось то, чего и ожидать никто не мог. Теория внезапно отстала, позволив практике совершить смелый, хотя и незаконный, никем не предусмотренный обгон. Много лет назад знаменитый русский ученый Дмитрий. Иванович Менделеев сравнил теорию с фонарем, освещающим путь практике. Нетрудно представить себе, что произошло, когда фонарь стал светить вперед на очень короткое расстояние. Его света хватало лишь для авиации малых, дозвуковых скоростей. Очень скоро после серии катастроф, происшедших во многих странах мира, выяснилось, что "старые добрые" физические законы справедливы далеко не на всех скоростях и не на всех высотах. Практика ставила эти вопросы перед наукой с большой остротой. Чтобы ответить на них и создать новую технику, нужны были совместные действия ученых и конструкторов. Вероятно, Мах - австрийский физик, скончавшийся полвека назад, и предполагать не мог, сколь грозно прозвучит его имя в середине XX столетия. Собственно говоря, вспомнить о нем заставило число его имени, измерявшее отношение скорости полета к скорости звука. Чем большей становилась эта бесхитростная десятичная дробь, чем ближе подбиралась она к единице, тем больше неожиданностей обрушивалось на летчика и машину. Советский народ увидел реактивных первенцев в августе 1946 года. Яковлев показал Як-15, Микоян и Гуревич - МиГ-9. Лавочкин - машины с ускорителями. Все самолеты произвели впечатление. Инженеры-испытатели Р. А. Арефьев и М. Л. Барановский рассказывают: "Летчик на нашей машине с прямоточным ускорителем Бондарюка прошел заданный маршрут и благополучно приземлился. У Давыдова на Ла-7Р получилось иначе. Салют окутал аэродром дымкой. Давыдов промазал и прошел левее трибун. Заметив ошибку, летчик, имея в запасе всего полминуты, резко развернулся и спикировал. Раздался страшный грохот. Публика в панике. Большая скорость полета и солидный факел реактивного двигателя создавали впечатление пожара. Перейдя затем почти, на боевой разворот, Давыдов ушел с аэродрома...". А примерно через месяц, сжигая при рулежках траву аэродрома, покатился на испытания и Ла-150. Испытанный в конце лета 1946 года, Ла-150 тотчас же запустили в небольшую серию. Вместе с МиГ-9 и Як-15 пятнадцать Ла-150 должны были принять участие в воздушном параде над Красной площадью. Параду придавалось большое значение. Шутка ли - впервые в истории одновременно поднять в воздух несколько полков военных реактивных самолетов! - Семену Алексеевичу пришлось трудно,- вспоминал генерал Ефремов.- Еще не кончились испытания, еще летчики не умели летать на таких машинах, еще и летчиков не было, а ему уже предлагалось обеспечить полную безопасность самолетов при полете над Красной площадью. -- Но серия была построена не только для парада, к тому же не состоявшегося из-за плохой погоды,- уточняет М. Л. Барановский.- На ней учились технологи, эксплуатационники, летчики. Она позволила проверить, -- ____________________________________________________________________________ Як-15 - первый реактивный самолет А. С. Яковлева _________________________________________________________________________________ как справляются с новой техникой заводы, сумеют ли овладеть этой машиной военные. Одним словом - Учеба, Учеба с большой буквы для всех. Учиться действительно пришлось многому. Подступы к звуковому барьеру трудны. Скорость потока, обтекающего самолет в разных местах его поверхности, различна. Некоторые участки "летят" быстрее звука. Именно это - смешанное дозвуковое и сверхзвуковое обтекание самолета - и приносит множество неприятных неожиданностей, затрудняя управление. Почти одновременно пришла тряска. Местные скачки уплотнения, эти маленькие "махи", вызывали микровибрацию. Жесткие части самолета передавали ее друг другу. Самолет начинало внезапно "знобить" и "лихорадить". Возникал так называемый волновой кризис. В ноябре 1945 года с этим неприятным явлением встретились англичане, установив на самолете "Глостер Метеор IV" мировой рекорд - 976 километров в час. "Даже в самую тихую погоду,- писала газета "Британский союзник",- полет на машине типа "Глостер Метеор" напоминает езду на деревянном велосипеде по булыжной мостовой. Уже при скорости 960 километров в час начались короткие резкие толчки, и все время, когда они шли на полном ходу, летчиков швыряло о стенки кабины". Избавиться от тряски, отработать управление, уменьшить сопротивление, чтобы тем самым сократить и потребную тягу двигателя,- таковы основные проблемы внешней аэродинамики. Но не меньшей сложности проблемы занимали внутреннюю аэродинамику, изучавшую поведение воздушных струй внутри самолета, струй, проходивших через двигатель. Нужно было неукоснительно строго выдерживать направление этих струй, организовать их вход и выход без потерь, без снижения коэффициента полезного действия двигателя. Обе проблемы - уменьшение и внешнего и внутреннего сопротивления - отступали перед третьей, еще более значительной: "отодвинуть" неприятные явления, перевести их в область иных, гораздо более высоких скоростей. На первый взгляд сама постановка вопроса нереальна и фантастична. Сместить явление, сопутствующее какой-то определенной скорости. Да возможно ли это? - Возможно! Поскольку возникновение скачков уплотнения связано с конфигурацией частей самолета, совершенно ясно, что, изменив аэродинамические формы, можно отсрочить возникновение волнового кризиса. Но, зная цель, никто не видел к ней кратчайшей дороги. Не знал этой дороги и Лавочкин. Терпеливо и последовательно Лавочкин повел необходимые эксперименты на Ла-150, раскрывшие пути в не-йшаемое младшим собратьям этого самолета - Ла-152, Ла-154, Ла-156 и, наконец, Ла-160, принесшему конструктору сладость успеха. Каждая из этих машин, сохраняя основные черты прародителя, несла в себе нечто новое, все глубже и глубже вторгаясь в мир больших скоростей. Семейство экспериментальных "Ла" позволило опробовать не только трофейные реактивные двигатели, но и разработанные В. И. Нижним двигатели с дожиганием. Прошли проверку тонкие крылья, скоростные ламинарные профили, элероны с внутренней компенсацией и прочие технические новинки. Крыло, сотканное из загадок В той комнате КБ, где работала группа общих видов, стоял длинный и узкий стол. На нем раскатывался рулон с компоновочной схемой самолета. Вокруг стола - высокие, как в баре, табуреты. Семен Алексеевич взбирался на один из них и начинался разговор, в котором все были равны, невзирая на должности и звания... Посторонний человек - случайный свидетель таких дискуссий - был бы немало удивлен. "Разделав" оппонентов, Лавочкин меньше всего выглядел победителем. Казалось бы, его логика безупречна, его аргументы сложились в строжайшую систему, но тем не менее, обводя глазами собеседников, Семен Алексеевич просил: - Спорьте со мной! Я еще не уверен, что идея правильна... Он знал: идеи, проверенные за длинным столом, никогда не оборачивались потом мыльными пузырями. В КБ Лавочкина любили и умели спорить, но остроты, в которой происходило обсуждение последнего, самого рискованного варианта, не помнили даже старожилы. Речь шла о стреловидных крыльях. - Быть может, это один из очень немногих периодов, когда мы видели Семена Алексеевича в таком взволнованном и нервном состоянии,- вспоминали его сотрудники,- он нервничал. Нервничал здорово. Не решить вопрос нельзя, а решение выглядело чертовски рискованным. Что знал Лавочкин о стреловидных крыльях? Как я уже отмечал, Семен Алексеевич был достаточно искушен в вопросах аэродинамики. К тому же он получил исчерпывающую информацию от главного аэродинамика своей "фирмы" Н. А. Хейфица. Большие скорости полета поставили аэродинамику в сложное положение. Во многом она отстала и была бессильна - отсюда кровь, пролитая при штурме звукового барьера. Но многое уже известно. Стреловидное крыло - белое пятно на картах практики, но отнюдь не диковинка для теоретиков. Именно они, ученые, руководимые академиком С. А. Христиановичем и профессором В. В. Струминским, и поставили на повестку дня эту интереснейшую научно-техническую проблему. История, завершившаяся работами Струминского, началась в 1935 году. В тот год, собравшись на конгрессе в Риме, аэродинамики всего мира открыли для себя докторскую диссертацию Сергея Алексеевича Чаплыгина "О газовых струях" - фундаментальную теоретическую работу по аэродинамике больших скоростей, написанную еще в 1902 году. И (такое не раз бывало в науке) высоко оценив труд Чаплыгина, аэродинамики не придали большого значения докладу немецкого ученого Буземана, сообщившего тому же конгрессу о подмеченном им эффекте стреловидности. Буземан - известный ученый. Он создал теорию сверхзвукового обтекания. Однако и сам не оценил по достоинству открытый им эффект стреловидности. Отметив факт, Буземан не сумел дать интересное практике толкование возможностей и перспектив своего открытия. Между открытием эффекта стреловидности и его воплощением в реальных конструкциях пролегала "дистанция огромного размера". И вот что любопытно. В годы войны, когда немецкая наука и техника занялись проблемами скоростной авиации, Буземан- продолжил исследования, но самолета со стреловидным крылом немцы все же не построили. И не мудрено. Они не достигли скоростей, при которых продвигаться вперед без такого крыла было просто нельзя. Когда конструкторы разных стран почти одновременно и почти одинаково подошли к скоростям, требовавшим стреловидного крыла, знание теории облегчило им многое. Начальник группы аэродинамики КБ профессор Хейиц - дальновидный и эрудированный исследователь. Он отлично понимал, какие заманчивые перспективы сулят новые крылья. Бригада у Хейфица небольшая - человек пятнадцать расчетчиков. Оснащены они плохо. Электронных вычислительных машин еще не существовало. В ход пошли счеты, арифмометры и логарифмические линейки. Не случайно и сотрудники Лавочкина, и ученые, не сговариваясь, называли Хейфица полпредом. Он действительно был полпредом Лавочкина в науке и полпредом аэродинамической науки у Лавочкина. Это во многом способствовало тому, что после обширных дискуссий за длинным столом было принято решение - стреловидное крыло - строить. Однако и здесь Семен Алексеевич остался верен себе. До последней минуты он продолжал сравнительный анализ крыльев разного типа. "В области больших скоростей,- рассказывал мне профессор Струминский (ныне действительный член Академии наук СССР),- стреловидные крылья позволяли продвинуться гораздо дальше, чем обычные. Но они очень осложняли взлет и посадку. Да не только взлет и посадку. Стал невозможным полет на больших углах атаки. А большие углы атаки - это маневр. Нужно ли говорить, что без маневра не может существовать боевой истребитель? Нарушение устойчивости на больших скоростях полета в условиях маневра, а также на режимах взлета и посадки связано с тем, что на верхней поверхности стреловидного крыла возникают интенсивные поперечные токи. Они гонят воздух вдоль поверхности крыла, накапливаются в концевой части, резко ухудшая ее обтекание...". К чему приводило явление, о котором рассказывал Владимир Васильевич? К тому, что на концах крыльев подъемная сила падала, а в их корне увеличивалась. Равновесие нарушалось. Самолет стремился задрать нос, еще больше увеличивая угол атаки. А стоило самолету выйти, на большие углы атаки, как начиналось беспорядочное вихревое обтекание, грозившее переходом в штопор. ти опасные поперечные токи почти одновременно стали исследовать Струминский, американец Сире и немец Прандтль. "Поток воздуха из корневого сечения устремлялся в конец,- рассказывал Струминский.- Возникали совершенно непривычные для аэродинамики явления: падение несущих свойств на конце и улучшение несущих свойств в корне. Чтобы самолет не задрал нос, понадобилось улучшить обтекание на концах и ухудшить у корня... Так на крыльях появились перегородки, задерживающие поперечные течения". Возникло много сомнений. Появилось много опасностей. Поставить перегородку совсем не просто. Силы, действовавшие на этот небольшой гребешок в полете, измерялись не килограммами, а тоннами. "Создание стреловидного крыла,- продолжал свой рассказ Струминский,- потребовало новых профилей, чтобы поставить их в корне. Таких профилей не существовало. Лучшие умы ЦАГИ соревновались в их создании. Это было совсем не просто - разработать профиль, хорошо работающий на больших скоростях и не дающий подъемной силы на малых... Одновременно профили с самыми высокими несущими свойствами и характеристиками устойчивости поставили на конце крыла...". Стреловидное крыло взорвало и опрокинуло привычные представления аэродинамических расчетов. И все же не это стало самой сложной частью дела. За небольшой группой инженеров и ученых, работавших под руководством Хейфица в КБ Лавочкина, стоял ЦАГИ. Многочисленный коллектив высокоавторитетных исследователей с возможностью провести необходимый эксперимент надеж-, но защищал и подкреплял группу энтузиастов лавочкин-ского КБ, работавших на переднем крае. Прочнисты не имели той опоры, которой обладали аэродинамики. Апробированную десятилетиями схему расчета, похожую на алгебраическую формулу, куда предстояло подставлять те или иные конкретные цифры, пришлось отбросить. Все стали решать заново. Заново и совершенно самостоятельно. Читатель помнит, что сложность и стремительность развития послевоенной авиации вынудила главных конструкторов ограничиться стратегией своей профессии, отдав помощникам решение задач инженерной тактики, Стреловидное крыло очень обострило и без того нелегкую ситуацию. Весь свой огромный опыт, всю недюжинную эрудицию в вопросах аэродинамики и прочности пустил в ход Лавочкин. Ведь именно ему и прежде всего ему пришлось разбивать проблему на ряд четких конкретных задач, ответ на которые и позволял осуществить новый рывок вперед. В КБ всегда ценили такой талант главного, как умение подобрать людей, способных раскрыть свои творческие .возможности прежде всего в минуты наибольшего напряжения. Помимо Хейфица, ближайшими помощниками Семена Алексеевича в создании самолетов со стреловидными крыльями стали еще два человека - его заместитель доктор технических наук Наум Семенович Черняков, человек высочайшей инженерной культуры, огромной эрудиции, редкого обаяния, и начальник группы прочности профессор Иосиф Абрамович Свердлов. С главным прочнистом лавочкинского КБ я познакомился еще в институте. Но не лично: толстая книга "Расчет самолета на прочность" - важное пособие при разработке студенческого проекта. В жаркие дни работы над Ла-160 практическими делами пришлось дописывать Свердлову новые главы этого увесистого фолианта. Свердлов работал одновременно в КБ Лавочкина и Военно-воздушной академии имени Жуковского. Это было нелегко, но практика КБ обогащала профессора бесценным опытом, а научные исследования, проводимые в академии, несли свою лепту производству. Свердлов многому научил людей, с которыми работал у Лавочкина. Настойчиво и упорно воспитывал он своих помощников, прививая им скрупулезную точность и высокую требовательность, без которых невозможно гарантировать самолету полную безопасность. Это был самоотверженный, влюбленный в свое дело человек. Работяга. Из тех, кто мечтает, чтобы в сутках было 25 часов. Он имел большую семью и жил в маленькой комнатушке. Вечерами, закончив трудовой день в академии и в КБ, он усаживался в кухне (другого места у него не было, а отдельные квартиры в ту пору были далеко не у каждого), теребя себя за волосы (такая уж была у него привычка), принимался за расчеты. Как вспоминает об отце А, И. Свердлов, "у него не было письменного стола и книжного шкафа. Все, что было необходимо для работы, лежало в большом цинковом баке для кипячения белья". Лавочкин и Свердлов понимали друг друга с полуслова - один умел поставить задачу, другой быстро отыскать наиболее целесообразное решение. Вместе с Семеном Алексеевичем Свердлов - непременный участник всех прочностных испытаний. Он дотошно осматривал проверяемую конструкцию, и горе было ведущим инженерам, если он находил какие-либо упущения. Свердлов наизусть знал чертежи, понимал и чувствовал, как работает каждая заклепка. И если Свердлов говорил "да", то это было полной гарантией надежности. Ответственная работа у прочниста. И не только потому, что цена его ошибки - развалившийся в полете самолет, погибший летчик. Малейшая неточность - и сложное уравнение, каким был в глазах конструкторского коллектива самолет со стреловидными крыльями, пополнялось новыми неизвестными. Провести границу, отделявшую прочность от аэродинамики, было, пожалуй, просто невозможно. Казалось бы, высокая ответственность должна была прежде всего породить предельную осторожность. Со Свердловым этого не произошло. Будучи предельно аккуратным и исключительно тщательным в работе, он одновременно проявлял и незаурядную смелость - качество, авиационному прочнисту крайне необходимое. Сын Иосифа Абрамовича, Артур Иосифович Свердлов, унаследовавший профессию отца ("не только сын, но и его при-лежнейший ученик", как сам он себя рекомендует) рассказывал мне: "В конструкторском бюро Семена Алексеевича был впервые проведен расчет однолонжеронных треугольных крыльев, а также треугольных крыльев с лучевым расположением лонжеронов, силовую схему которых предложил отец, а также стреловидных крыльев различной стреловидности. Много изобретательности было проявлено при проведении статических испытаний отдельных частей конструкции самолета. Впервые достаточно эффективно инженерная теория прочности стреловидного (а затем и треугольного крыла) с привлечением большого количества натурных экспериментов была начата и развивалась в конструкторском бюро С. А. Лавочкина. В дальнейшем, развивая теорию прочности стреловидных крыльев, уже после смерти Семена Алексеевича, отец активно сотрудничал с конструкторскими бюро А. Н. Туполева и С. В. Ильюшина". Сложные проблемы аэродинамики, возникавшие в КБ Лавочкина, теснейшим образом переплелись с не менее сложными проблемами прочности, а затем, наращиваясь по законам цепной реакции, град хитрых задач обрушивался на конструкторов. Вот почему за длинным столом с высокими табуретами, где обсуждались результаты поисков, гул стоял, как на пчельнике... Стреловидное крыло сдавало экзамен ярким солнечным днем. Небольшая группа людей стояла на крыше ангара. Говорили о разном. Но один вопрос, словно сговорившись, обходили все: пройдет ли полет благополучно? Все рассчитано, размерено, взвешено... Но очень уж ново то, что должно сдать экзамен. А ведь в новом не все можно строго доказать. Явление всегда может пойти чуть-чуть иначе. Это очень опасное "чуть-чуть"! Из-за него летчик может никогда не вернуться к жене, к детям... Нет, совсем не просто послать человека на такое опасное дело. Вот почему так нервно переминается с ноги на ногу Лавочкин... "Звуковой барьер казался тогда авиационным работникам всего мира очень страшным,- вспоминал Н. С. Черняков, стоявший в тот достопамятный день рядом с Семеном Алексеевичем.- Казалось, преодолеть его невозможно. А преодоление этого барьера было конечной целью наших работ по созданию Ла-160. Мне трудно передать волнение, которое испытывали мы все, хорошо зная, какие опасности поджидают машину и испытателя. Первый вылет самолета всегда волнует. Всегда волнует, хотя ты знаешь, что процесс необратим. Чем ближе мгновение отрыва от земли, тем сильнее охватывающее тебя волнение. Особенно томительны последние часы, а последние минуты просто кажутся вечностью. Испытываешь такое огромное физическое напряжение, что за ним неизбежно приходит реакция - большая слабость. Когда самолет выруливает на старт и ты знаешь, что на нем есть что-то новое, не волноваться нельзя. На этот раз волнение было особенно сильным.,.". Не меньше волновался и Струминский. Даже сейчас, спустя много лет, слушая его рассказ, я ощущал в нем взволнованные ноты: "Вот он летит, идет на посадку. Сядет или не сядет? И как сядет? Это ведь первый полет, а посадочные режимы для "Стрелки" особенно опасны. Федоров приземлился великолепно. Мы его расцеловали и бросились к самолету. Осмотрели крылья, оперение, обшивку. Все цело, все держится. И рули и перегородки на крыльях целы. Нигде никаких трещин". Вот так и вошло стреловидное крыло в практику советской авиации. А дальше - словно рванулась лавина. Именно этого и добивался Лавочкин. Не раз говорил он своим сотрудникам: - Генеральный конструктор должен толкнуть первый камень. Тот, с которого начинается лавина! Многое стало иным после завершения этой работы. Без преувеличения можно сказать, что Ла-160 открыл стреловидные крылья для всей советской авиации. Но... в бочке меда оказалась и ложка дегтя. Пролив яркий свет на возможности стреловидных крыльев, Ла-160 нал жертвой другой особенности околозвукового полета. Путь к большим скоростям преградила тряска. Вибрации были не в диковинку для самолетостроения, но тряска скоростных самолетов - это страница особая в истории авиации. Летчики привозили самую невообразимую информацию. То говорили - тряска непреодолима, то вдруг сообщали, что ее обрывает выпуск шасси или просто покачивания. Ученые собирались, спорили... Но способа преодолеть тряску Ла-160 так и не нашли. Конечно, всем хотелось, чтобы Ла-160, или, как его нежно называли в КБ, "Стрелка", достиг звуковой скорости. Не получилось. Не вышло. Блестяще подтвердив целесообразность стреловидных крыльев, первым в нашей __________________________________________________________________________ Ла-160 - первый самолет со стреловидным крылом С. Л. Лавоч-кииа ________________________________________________________________ стране показав скорость, превысившую тысячу километров в час, этот самолет так и не смог выйти на штурм звукового барьера. И все же Ла-160 сделал огромное дело. Через считанные месяцы после завершения его испытаний все три истребительных КБ выпустили стреловидные самолеты. Не экспериментальные, не исследовательские, а настоящие боевые истребители. Рождению семьи стреловидных истребителей способствовали не только успехи Ла-160. Почти одновременно появились новые двигатели. На основе приобретенных за рубежом английских двигателей "Нин" и "Дервент" удалось создать отечественные РД-45 и РД-500. Для знакомства с этими двигателями, созданными фирмой Роллс-Ройс, в Англию выехали авторитетные специалисты - конструктор самолетов А. И. Микоян, конструктор двигателей В. Я. Климов и большой знаток авиационных материалов С. Т. Кишкин. Как вспоминает Т. Т. Самарин, работавший в то время в Англии, после немецких маломощных ЮМО-003 и ЮМО-004 английские двигатели выглядели очень обещающими. И когда продемонстрированный советским гостям "Глостер Метеор" легко, с небольшим пробегом поднялся в воздух (а после установленного в 1945 году мирового рекорда скорости этот самолет усовершенствовали в еще большей степени), он произвел очень хорошее впечатление. "На "Дервент" у фирмы покупатели были,- рассказывает Т. Т. Самарин,- но "Нин" был настолько мощным, что ни один английский авиаконструктор еще не был готов к практическому использованию мощности, которой этот двигатель располагал. В этом смысле наши самолеты, аэродинамически более совершенные и глубоко продуманные, оказались тогда намного впереди английских". Мы купили у англичан около шестидесяти экземпляров этих двигателей. И создали на их основе отечественные РД-500 и РД-45. Вот тут и повторилось то, что случилось в пору конструкторского дебюта Лавочкина, Яковлева и Микояна в области истребительной авиации. Тогда Лавочкин и Яковлев взяли для своих самолетов мотор М-105, Микоян - более мощный АМ-35. И на этот раз Лавочкин для Ла-15, Яковлев для Як-23 выбрали РД-500, Микоян же поставил на МиГ-15 более мощный РД-45. Это? выбор многим предопределил огромный успех его истребителя. ...Высокая скорость полета резко увеличила нагрузки на рулевое управление и элероны. От летчика потребовались нечеловеческие усилия, чтобы вести машину. И вот, избавляя его от этих усилий, Лавочкин впервые в нашей стране поставил бустер - гидравлический агрегат, значительно уменьшивший усилия на рукоятки и педали управления. Такие устройства, разработанные в одном из специализированных конструкторских бюро, с легкой руки Лавочкина быстро вошли в практику самолетостроения. Даже появились специализированные заводы-смежники, поставлявшие самолетостроителям бустеры, подобно тому, как поставляются моторы, вооружение, оборудование. Кроме стремительного устойчивого полета и надежного управления, машина больших скоростей настойчиво требовала высоты, а высота росла медленно. И не потому, что двигатель, как несколько лет назад, задыхался без кислорода. Нет, с появлением компрессоров преодолевать эту преграду стало проще. На пути конструкторов возник новый барьер - физиологический. Сама природа ограничила возможности забираться на большие высоты. Старая задача о высотных скафандрах и герметических кабинах, до конца не решенная перед войной, грозила обернуться для истребительной авиации непреодолимой преградой. На поршневых самолетах, освоивших лишь подступы к стратосфере, трудности высотного полета, как правило, исчерпывались кислородным голоданием. Надень летчик кислородный прибор, поставь конструктор на мотор хороший нагнетатель, глядь и отвоевали дополнительную тысячу метров. Теперь, после войны, такие победы уже перестали быть победами. __________________________________________________________________________ МиГ-15 - истребитель конструкции А. И. Микояна ____________________________________________________________________________ Реактивный двигатель создал неслыханные возможности увеличения высоты полета. Но при жестоких, доходящих до пятидесяти градусов морозах стратосферы одной кислородной маской уже не обойтись. Так возникла задача создания летчику микроклимата с благоприятными для здоровья давлением, температурой и влажностью воздуха - очень сложная проблема герметической кабины. Решая эту проблему, конструкторские коллективы Лавочкина, Микояна, Яковлева, находящиеся в непрерывном соревновании, из "конкурентов" превратились в союзников, объединив свои усилия. Рассказ доктора технических наук В. Е. Ишевского помог мне представить масштабы этой борьбы. Каждая заклепка (их на самолете десятки тысяч) грозила возникновением микрощели, а общая площадь таких микрощелей не должна была превышать площади одной пятимиллиметровой заклепки. Иными словами говоря, даже одна вышедшая из строя заклепка могла зачеркнуть труд огромного коллектива. Сделать стенки непроницаемыми для воздуха помогла химия. Поставленные на специальном клее заклепки уже не угрожали кабине опасными микрощелями. И все же эта часть проблемы оказалась, вероятно, самой простой. Последующие задачи располагались по нарастающей конструктивной и технической сложности. В самом деле, летчику, сидевшему внутри кабины, надо двигать рулями и элеронами, находившимися на оперении и концах крыльев. Так возникал парадокс. В непроницаемой оболочке кабины приходилось создавать так называемые гермовыводы для тяг управления, трубопроводов, электропроводов. "Гермо" - значит герметические, то есть такие, чтобы через них не проходил воздух. Далее. Летчик садится в кабину, закрывает крышку фонаря. Крышка должна обеспечить непроницаемый, герметический стык со стенкой кабины, при необходимости легко 'открываться и закрываться. Нужен замок, удовлетворяющий всем этим требованиям. Какой из них будет работать надежно и безотказно - механический, электрический, электромагнитный? Конструируя замок, инженеры помнили еще об одном его качестве - о мгновенности действия. В случае нужды кабина должна мгновенно разгерметизироваться для катапультирования летчика. Вот и произнесено слово "катапультирование". Проблема, рожденная большими скоростями. Летчик уже не мог без риска для жизни покинуть самолет. Ему просто не хватало для этого силы. Катапультирование в аварийных случаях - необходимость, но кресло, на котором сидел человек, должно вылететь из самолета, ни за что не задев. От качества замков не меньше, чем от катапульт, зависела жизнь пилота *. И тут все пришлось начинать с нуля. Никаких предшественников не было. Немцы освоили скорости только порядка 750-800 километров в час. Фашистские инженеры "выстреливали" пилота сжатым воздухом. Наши самолеты намного превзошли эти скорости. В 1946 году они летали со скоростью 900, а в 1947 - 1000 километров в час. В таком стремительном полете сжатый воздух для катапультирования непригоден. Катапульту сделали пороховой. Опытную конструкцию прежде всего подвергли придирчивым наземным испытаниям. Грузы, манекены, затем животные. Катапульта "стреляла" кроликами, кошками, собаками и, наконец, обезьянами. Подопытные животные подвергались разносторонним исследованиям. Строгость врачей чрезвычайно велика. Перегрузки слишком грозны, чтобы вести себя с ними панибратски. Настало время выстрела человеком. Место в кабине согласился занять исследователь, выполнивший теоретические расчеты, необходимые создателям катапульт. Он считал, что имеет право на риск больше, чем кто-либо другой. Комиссия, проверив его здоровье, удовлетворила желание ученого. В белоснежном костюме, облепленный приборами, похожий на героя фантастического романа, совершил Р. А. Стасевич первое катапультирование. После многократных наземных экспериментов 24 июня 1947 года катапульта впервые выбросила в полете парашютиста-испытателя Г. Кондрашева. Реактивный двигатель увеличил потолок самолета, а это, в свою очередь, утвердило в правах гражданства герметическую кабину. Помог "обжить" герметическую кабину и компрессор двигателя. Создавая повышенное ________________________________________________________________________________ * К тому времени, когда возникла необходимость в катапультировании, то есть принудительном отделении летчика (члена экипажа), было экспериментально установлено, что человек может преодолеть воздушный поток при покидании самолета на скорости ие более 600 километров в час.- Ред. ___________________________________________________________________ давление воздуха, он позволил конструкторам отвести небольшую часть этого воздуха в кабину. И все же найти источник воздуха лишь половина дела. Не менее важно сделать его пригодным для дыхания. Воздух, идущий от двигателя, мог быть загрязнен самыми различными примесями. Вспоминая опыты по герметизации кабин в тридцатых годах, А. В. Чесалов рассказывал: "Мне приходилось летать в построенной тогда герметической кабине. Наддув, осуществлявшийся от двигателя (речь идет о дизельном двигателе.- М. А.), приводил к проникновению в кабину опаснейшего врага - окиси углерода. Мы не имели индикаторов, позволявших определять содержание угарного газа, и воспользовались старым шахтерским приемом, взяв в кабину невероятно чувствительных к угарному газу канареек. И пока не были созданы приборы, они охраняли экипаж от отравления. Разумеется, в конце сороковых годов о такого рода кустарщине и речи быть не могло. Понадобились фильтры, и их сконструировали. Правда, при испытании не обошлось без конфузов. Прорывались очистительные фильтры. И прорывались они даже на первых серийных машинах..." Изрядную долю хлопот принес конструкторам и сам пилот. В герметической кабине, тщательно изолированной от окружающего мира, он источник тепла и влаги. В условиях стратосферы на сильнейшем морозе влага враг, и не безобидный: стенки и окна кабины покрывались толстым слоем инея. Пришлось и тут поломать голову над тем, чтобы создать летчику наибольший комфорт - правильно рассчитать теплообмен в кабине, устранить избыток влаги, найти способ обогревать стекла, чтобы сохранить обзорность. Постепенно герметическую кабину обжили. Семен Алексеевич поставил ее на Ла-174. Группа конструкторов разных КБ и помогавших им ученых (от КБ Лавочкина в эту группу входил Ишевский) была удостоена Государственной премии. Ла-174 начал испытательные полеты. Теперь уже несомненно, что стреловидное крыло имеет право на существование. Это отлично доказал еще Ла-160. Но действительно ли это нашумевшее стреловидное крыло самое целесообразное? Сегодня недоверие к стреловидному крылу выглядит по меньшей мере странным. Без него немыслима скоростная авиация. Но тогда конструктор не мог не считаться с тем, что вес этого крыла куда больше, чем прямого. Лавочкин не мог принять окончательного решения, не ответив на вопрос: что же разумнее - вкатить сотни лишних килограммов металла в "стрелку" или же сделать прямое тонкое крыло - легкое и свободное от неприятностей при взлете и посадке? Почти одновременно на испытательном аэродроме появились две стосемидесятичетверки - одна с тонкими крыльями, другая со стреловидными. Соревнование выиграла "стрелка", показав большую скорость. Именно ее сделали основным вариантом нового самолета. "Острый" это был вариант! С тонкокрылой модификацией было спокойнее. - Наша машина Ла-174 ТК,- рассказывал мне один из инженеров,- была как рабочая лошадь. Она потом долго летала. Двигатели на ней испытывались. Разные двигатели. Изумительная машина была... Несмотря на большую скорость и скороподъемность, стреловидный вариант Ла-174 не сразу снискал такие же добрые слова. С места в карьер самолет угостил испытателей пренеприятнейшей тряской. Бились над ее устранением отчаянно. Крупнейшие специалисты по вибрациям лепили множество датчиков. Лучшие испытатели - Гал-лай, Анохин облетывали самолет, стремясь помочь фирменному летчику Федорову. Не справившись с вибрациями, в одном из полетов катапультировался Федоров, а машина, словно в насмешку, перестала трястись и, спланировав, приземлилась почти без повреждений. Избавиться от тряски помог случай. Однажды, когда самолет катился по аэродрому, кто-то заметил, что маши- ______________________________________________________________________________ Ла-174 - опытный самолет С. А. Лавочкина ________________________________________________________________________________ на трясется. Пригляделись - видят: вздрагивает фюзеляж и словно в ответ колышется оперение. То, что произошло дальше, в первый момент вызывало улыбки: поставив датчики, машину стали катать по аэродрому. Но когда записи необычных испытаний попали к прочнистам, остряки замолчали: частоты колебаний оперения и фюзеляжа, которым обязательно надлежало быть разными, совпали. Машину сняли с полетов. Поставили на вибростенд - совпадение повторилось. Сомнений не оставалось - у фюзеляжа и оперения действительно одинаковая частота собственных колебаний. "Благодатная" возможность для возникновения в полете неприятной тряски. Теперь, по устранении дефекта, самолет готов превратиться в серийную машину, в первый боевой реактивный истребитель, носивший имя Лавочкина. Для главного экзамена, торжественно именуемого государственными испытаниями, самолет прибыл в НИИ ВВС. Только после этого должно было решиться: останется ли он безвестным изделием "174" или же получит имя. Новую машину предложили летчику-испытателю первого класса инженер-полковнику А. Г. Кочеткову. Работать с Лавочкиным? Кочетков готов. И не только потому, что ему понравился новый истребитель. Испытателя располагал к себе и конструктор. Семен Алексеевич генерал, большое начальство, но Кочетков хорошо помнил и другого Лавочкина - худого, долговязого, в коротеньком, по моде-того времени, пиджачке, с глазами, полными надежды. Они познакомились в 1939 году. После окончания Военно-воздушной академии Кочетков работал в НИИ ВВС летчиком и помощником ведущего инженера А. И. Ни-кашина. Однажды, когда Никашин уехал в командировку, в комнату, где работал Кочетков, вошел начальник института А. И. Филин в сопровождении трех штатских. - Вот, товарищ Кочетков,- сказал Филин,- инициативная группа предлагает интересный самолет. Истребитель деревянный, а это очень важно. Я хотел бы, чтобы вы дали заключение как ведущий инженер. Кстати, познакомьтесь... Штатские представились: - Горбунов! - Лавочкин! - Гудков! Проект был весьма эскизным. Расчеты очень прикидочными. Но это не помешало Кочеткову разглядеть его перспективность. Так, временно оказавшись на месте Никашина, Кочетков способствовал осуществлению первого проекта Лавочкина и его товарищей. С тех пор много воды утекло. Пути летчика и конструктора не раз пересекались. Кочетков летал на ЛаГГ-3, на Ла-11, на Л а-150. А вот теперь настала очередь изделия "174". В одном из первых же вылетов самолет подставил летчику подножку - на взлете открылся фонарь пилотской кабины. Вспорхнул, словно птичка, и лег на правый борт. Положение, хоть караул кричи. Сбавить скорость нельзя - самолет вот-вот упадет. Лететь быстрее тоже нельзя - фонарь деформируется и возможность аварийного сброса в такой ситуации исключена: фонарь может ударить по хвосту, самолет погибнет. Медленно, на самой малой скорости, Кочетков сделал круг "блинчиком" и посадил машину. Потом все было хорошо. А под занавес опять неприятности. На большой высоте кабина вдруг наполнилась дымом. Летчик перестал видеть приборы. Пришлось надеть кислородную маску. Куда летел самолет? Неизвестно - видимости не было. Когда гибель машины казалась неминуемой, летчик установил причину пожара. Конструктор оказался ни при чем. Загорелся моторчик динамометрической ручки - тот, что движет ленту в самописцах. Летчик выключил испытательную аппаратуру и благополучно приземлился. Не застал врасплох Кочеткова и третий сюрприз - штопор. Самолету полагалось выйти из него после третьего витка. А истребитель этого сделать не пожелал. Огромный опыт помог Кочеткову выйти из положения, весьма рискованного. В годы войны ему пришлось всерьез заниматься штопором, испытывая американские самолеты "Айркобра". Эти машины не раз самопроизвольно входили в плоский штопор. Не освободилась от опасного дефекта и "Кингкобра", другая модификация того же самолета. Откомандированный в Америку, Кочетков убедительно доказал конструкторам, что опасный недостаток не устранен. В одном из полетов на "Кингкобре" Кочетков попал в плоский штопор. До земли летчик добрался на парашюте. Американцы исправили машину. Жизнь многих советских летчиков была спасена. Кочетков выявил и затаившийся дефект Ла-174. После его устранения самолет запустили в серию. Но большой славы своему создателю Ла-15 все-таки не принес. Как я уже отмечал, спроектировали одновременно три истребителя: Як-23, Ла-15 и МиГ-15. Яковлев и Лавочкин построили свои самолеты под РД-500, считавшийся "истребительным двигателем". Микоян, не поверив в искусственность такого разделения, взял более мощный "бомбардировочный" РД-45. Всем трем самолетам задали одинаковое вооружение, но, несмотря на то, что и Яковлев и Лавочкин проявили подлинные конструкторские чудеса, конкурировать с мощным МиГом они не смогли. Микоян создал машину, прочную и надежную, как палка, неприхотливую в своих требованиях к летчику. Не зря его прозвали самолетом-солдатом и без промедления поставили на конвейер. В отличие от МиГ-15, которым оснащалась армия, Ла-15 выпускался "малой серией". Это, конечно, определенная оценка самолета. Но полная ли? Оказалось, нет: только позже стало ясно, что Ла-15 - существенная ступень в истории советской авиации. В процессе его разработки Лавочкин создал те принципиально новые способы проектирования, которые получили права гражданства не только в самолето-, но и в ракетостроении. Послевоенные самолеты (и разумеется, ракеты) были куда сложнее самолетов довоенного и военного времени. Нафаршированный автоматикой и радиоэлектроникой, способный работать на гораздо большем числе режимов скоростей и высот, самолет требовал от конструктора многого. Чтобы довести и исправить его старыми способами, подправляя и исправляя от полета к полету, нужны были многие годы. В пятидесятые годы во всем мире стали развиваться лабораторно-стендовые испытания. Лавочкин первым из советских конструкторов перешел на новый способ работы. Он решил дополнить свое конструкторское бюро экспериментальной базой. Смело? Очень! Лавочкин преодолел самое трудное - инерцию мышления. Продувки в аэродинамических трубах, испытания в лаборатории прочности. Около полувека отрабатывали нрч>ектировщики самолета классическую схему необходимого эксперимента. Лавочкин эту схему сломал.Семен Алексеевич покинул город, где прошли трудные военные годы. Большой серийный завод уже не требовал присутствия конструктора, да и ему теперь не была нужна эта громада. После долгих поисков Лавочкину подобрали другой завод, в другом городе. Он был очень мал по сравнению с серийным великаном, на котором шла работа в военные годы, но во много раз превосходил экспериментальные заводы других конструкторов. Кое-кто отговаривал: - Семен Алексеевич, захлебнетесь! Завод велик. Вы не сумеете его загрузить, не сможете наладить опытное производство. Стоит ли брать его? - Семен Алексеевич, бери, не бойся! Если чего не хватит - добавим. Если нужно будет поддержать - поддержим! Так говорил П. В. Дементьев. И Лавочкин решил взять завод. Решил и не ошибся. Масштабы завода позволили ему стремительно развить лаборатории. Система лабораторий, созданных Лавочкиным на новой экспериментальной базе, позволила перенести центр тяжести испытательной работы с воздуха на землю. Семен Алексеевич поставил перед своим коллективом четкую задачу: доводить сложные самолетные системы на земле. Летные испытания - только контроль всего того, что уже выверено в лабораториях. Термобарокамеры, специальные стенды, воссоздающие условия полета, динамические стенды для проверки систем автоматического управления, автопилотов, радиооборудования, электронные вычислительные машины - вся эта разнокалиберная новая испытательная техника позволила добиться главного - отработать самолет, не поднимая его в воздух, так же, как отрабатывают в наземных испытаниях свои конструкции двигателисты. Перейдя на новые методы работы, самолетчики обогнали двигателистов. Самолетостроителям не всегда нужны натурные испытания (испытания подлинной машины в натуральную величину), без которых не обходится создание нового двигателя. Ни по вибрациям, ни по температурам, ни по динамике воспроизвести подлинные условия полета на стенде нельзя, а смоделировать можно. Так Семен Алексеевич заставил модель по-новому, по-иному помогать летать самолету. Если совсем недавно конструкторы главным образом считали и чертили, то с легкой руки Лавочкина широко поставленный эксперимент стал неизбежным спутником расчета и чертежа. - Мы создали свой маленький ВИАМ *,- рассказывал мне один из помощников конструктора,- у нас был свой ЦИАМ **. Мы организовали лабораторию самолетного оборудования, породившую впоследствии лаборатории автопилотов, радио, измерительной, телеметрической аппаратуры и т. д. А через некоторое время организовали даже собственный вычислительный центр. Семен Алексеевич видел в лабораториях не только возможность ускорить и заземлить большую часть испытаний. Лаборатории стали серьезным средством подтягивания смежников. "Начинка" истребителя обильна. Число смежников велико, а представляемые ими конструкции не всегда удовлетворяли Лавочкина. Анализ конструкций в лабораториях позволял быстро наводить порядок и разговаривать со смежниками в полный голос, тянуть их вперед, предъявлять к их продукции очень серьезные требования. Падение цитадели Осенью 1948 года произошло, наконец, событие, к которому так упорно шла наша авиация. Был взят звуковой барьер. Пала великая цитадель неизвестности. Готовились к этому долго, а прошли через роковую точку незаметно. Сейчас даже не скажешь точно, кто же в нашей стране сделал это первым. Доподлинно известно лишь одно: впервые грозный рубеж удалось преодолеть на машине Лавочкина. Работы на летно-испытательной станции лавочкинской "фирмы" было выше головы. Один за другим взлетали тонкокрылый и стреловидный Ла-174, Ла-168. Летчики писали полетные листы. Снимались показания самописцев, вычерчивались графики, характеризующие поведение самолетов и двигателей. В эти хмурые осенние дни, когда наземные службы едва поспевали обрабатывать результаты испытательных полетов, на опытный аэродром выкатился Ла-176. Похожий на те, что уже кружились в воздухе, он был в то же ______________________________________________________________________________ * ВИАМ - Всесоюзный институт авиационных материалов. * ЦИАМ - Центральный институт авиационного моторостроения. __________________________________________________________________ самое время несколько иным. Стреловидности в 45° не имел еще ни один другой советский истребитель. Погода была нелетной. Чтобы ее капризы не задержали важных исследований, Лавочкин перекинул испытания на юг. Стайка быстрокрылых экспериментальных машин закружилась над Черноморским побережьем. Нельзя сказать, что изделие "176" сразу же выделялось чем-то примечательным. Полковник Федоров, а за ним и молодой испытатель капитан Олег Соколовский изо дня в день упорно наращивали скорость. Однако до скорости звука было далеко. К тому же недостаточная мощность двигателя не позволяла надеяться, что эту скорость самолет сумеет развить в горизонтальном полете. И тогда, как это уже делалось не раз, решили провести полет "с прижимом", направив машину не по горизонтали, а со снижением, добавив к мощности двигателя вес самолета. Первые полеты "с прижимом" провел на Ла-176 Федоров. Это были смелые полеты. Из числа тех, про которые хорошо сказал известный американский испытатель У. Бриджмен: "Когда приходится переходить через новую границу человеческих знаний и нет опыта, на который можно опереться, надо просто идти вперед и преодолеть ее, хотя прежние знания не могут служить защитной броней". Именно так действовал Федоров. Оснащенный испытательной аппаратурой самолет - для него лишь техника, способная доставить человека и приборы в мир звуковых и зазвуковых скоростей. Нудный негромкий свист - неизменный спутник Федорова в этих ответственных полетах. Самолет, наращивая скорость, мчался к земле. Трехзначные цифры на шкале указателя скорости уступали место четырехзначным. Подбиралась к единице стрелка махметра *, самолет дрожал, как в лихорадке. И снова тишина. Звуковой барьер взят. Взят! А они упорно не хотят этому верить, эти неисправимые скептики - инженеры-испытатели. Опыт давно приучил их к недоверчивости. -- То, что Федоров первым летал на Ла-176,- сказал мне один из этих мудрых скептиков,- это точно. Но преодолел ли он первым звуковой барьер? Правда, приборы записали, что в полетах Федорова "число М" перевалило ______________________________________________________________________________ * Махметр - прибор, показывающий отношение скорости полета к скорости звука. Единица на шкале махметра свидетельствует о достижении скорости звука * _______________________________________________________________________________ за единицу, но мы не могли им верить. Приборы были инерционные, не способные точно фиксировать быстротечные неустановившиеся процессы. И хотя все материалы федоровских полетов показали превышение звуковой скорости, верить этим цифрам полностью нельзя. По ходу испытаний выяснилось, что трубка, измеряющая скорость, при проверке на сверхзвуковой скорости в аэродинамической трубе показала существенные погрешности. Едва был установлен этот факт, Хейфиц срочно вылетел в Москву. Он привез специальную сверхзвуковую трубку, с которой полетел Соколовский. Как оказалось потом, в отличие от своей предшественницы, новая трубка не завышала, а, наоборот, занижала скорость. Вот почему даже инженеры-испытатели при всем их скептицизме н осторожности были уверены, что в полетах Олега Соколовского удалось достигнуть звуковой скорости. Трагически сложилась судьба этого молодого летчика. Однажды на взлете у его машины отсосало фонарь. Фонарь открылся, и испытатель погиб. Кроме инженероврпрактиков, в аварийную комиссию вошли крупные ученые - профессора И. В. Остославский, В. Н. Матвеев, В. В. Струминский. Проанализировав обстоятельства катастрофы, комиссия отметила один важный факт: "В процессе заводских летных испытаний самолета "176" с двигателем ВК-1 достигнута скорость, равная скорости звука. Такая скорость получена в СССР впервые. Полученные материалы летных испытаний самолета "176" представляют исключительную ценность для нашей скоростной авиации". Впервые скорость звука на Ла-176 (если отбросить все сомнительные по технике измерения полеты) была достигнута 26 декабря 1948 года. С декабря 1948 года по январь 1949 такие полеты повторялись шесть раз. Но, как утвер- ______________________________________________________________________________ Да-176 - опытный самолет С. А. Лавочкина __________________________________________________________________ ждают испытатели, скептицизм которых я отмечал выше, скорость 1105 километров в час для Ла-176 не была пределом. Успех Лавочкина вскоре разделили и другие конструкторы. 24 сентября 1949 года летчик-иснытатель А. М. Тюте-рев при пологом пикировании на МиГ-15 преодолел звуковой барьер, а в феврале 1950 года летчик-испытатель И. Т. Иващенко на самолете МиГ-17 многократно и уверенно (на этот раз в горизонтальном полете без всякого "прижима") преодолел звуковой барьер. В феврале - мае 1950 года на те же летные режимы вышел и яковлевский Як-50. И снова трудности. Серьезные загадки и прямые неудачи, словно тень, сопутствовали победе. Стоило самолетам взять звуковой барьер, и неудачи сразу же тут как тут. Прежде всего увеличилась опасность затягивания самолета в пикирование. Вопреки распространенному мнению, от грозной опасности не удалось избавиться после полетов первых реактивных самолетов. Практически проблему решили способом, далеким от подлинной науки. После полетов первых самолетов были сразу же наложены ограничения по "числу М". Скорость самолета не должна была превышать какого-то предельного значения, после которого полет становился опасным. Вторжение в область зазвуковых скоростей аннулировало это ограничение. Чтобы выйти на сверхзвук, хочешь не хочешь, а пройти запретную зону надо. К тому же не только испытателю - летчику наивысшего класса, но и обычному пилоту средней руки. Увеличение запаса устойчивости ухудшило управляемость. Самолеты стали, как говорят, дубовыми. Мало того, с выходом на сверхзвук катастрофически упала эффективность руля. Вот и оказалось, что первые самолеты, способные обогнать звук, летали главным образом по прямой. И никакие бустеры тут не помогали. Если у бомбардировщика прямолинейный полет занимает большую долю его эксплуатационных режимов, то истребитель, лишенный свободы маневра, не может сделать дело, ради которого его создали. Истребитель должен вертеться! Не обладая маневром, он просто никому не нужен. С выходом на большие скорости пришла еще одна проблема - тепловой барьер. Скорости возросли, и самолет стал нагреваться за счет трения о воздух. Тепло от "форсажных камер еще больше усиливало этот нагрев. ; Пришлось вносить серьезные изменения в конструкцию. Щ"На хвостах появилась.сталь. Дюраль, заслуженный авиационный материал, сдался. И для каркаса и для обшивки фюзеляжа понадобились жаростойкие стали. Разумеется, заменой обшивки дело не ограничилось. По мере роста скорости аэродинамический нагрев давал о себе знать все больше и больше. Лавочкин очень многое сделал для преодоления теплового барьера. Одним из первых он снабдил пилотскую кабину турбохолодильной установкой, начал отработку систем управления в условиях высоких температур, был пионером применения титана. В этой напряженной работе все было очень трудным. Условия, в каких предстояло работать самолету, оборачивали любой неуспех в неслыханную тяжесть. Вот, например, смазка. Она должна была работать в огромном диапазоне температур от минус шестидесяти до плюс двести - триста. Работать не замерзая, не вытекая. И таких проблем возникало бесчисленное множество. Полет в неизвестность Лавочкин в расцвете сил. Ему едва перевалило за пятьдесят. Он не знает, что на далеком испытательном полигоне, где не окажется рядом умелых врачей, его подстережет смерть. Да разве думает о смерти этот жизнерадостный полнокровный человек? Рабочий день конструктора начинался всегда одинаково (этому он научился у А. Н. Туполева). Семен Алексеевич приезжал на завод. Неторопливо, заложив руки за спину, обходил территорию. Зоркий хозяин замечал все. Большой, ссутулившийся, плыл Лавочкин по территории завода. Но входя после своего утреннего обхода в КБ, он сразу же менялся. Появлялась быстрота и какая-то резкость движений. Он в эти минуты словно изготавливался для большого трудного дня. А дел было много. Работа как всегда, захлестывала конструктора. Весной 1950 года Лавочкин выпустил на испытания новых экспериментальных самолета - сверхзвуковой ; Истребитель-перехватчик "190" с двигателем АЛ-5 А. М. Люльки и двухместный всепогодный истребитель "200". Каждая из этих машин по-своему нова и интересна. Верный испытанному правилу - не продвигаться вслепую, Семен Алексеевич не прекращает исследовательскую работу. Серийный Ла-15, специально переоборудованный для научных экспериментов, прокладывает дорогу сверхзвуковому "190". Много вложил в эту машину коллектив Лавочкина. Разработана новая схема шасси. Еще дальше оттянулось не похожее на своих предшественников бак-крыло, с удивительно тонкими элеронами и рулями. Угол стреловидности возрос до 55 градусов. - Ла-190 обладал очень необычной формой,- рассказывал летчик-испытатель Кочетков,- посадка производилась на больших углах атаки. Это позволяло эксплуатировать самолет на небольших аэродромах. Короткому взлету помогал мощный двигатель. Короткой посадке - тормозной парашют и большие утлы атаки. Новая машина не пошла в серию, Но построили ее не зря. В то беспокойное для конструкторов время всякий экспериментальный самолет помогал внести ясность. - Как вести воздушный бой на больших сверхзвуковых скоростях? Как быстро снизить в случае необходимости скорость? Как узнать, свой самолет или чужой попал в зону обстрела?